 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 10 NÂNG CAO
                                                        ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 10 NÂNG CAO
                                                    Bài 6 trang 127 SGK Hình học 10 nâng cao>
Viết phương trình đường phân giác trong tại đỉnh O của tam giác OAB
Trong mặt phẳng tọa độ Oxy cho hai điểm A(3, 4); B( 6, 0)
LG a
Nhận xét gì về tam giác OAB ? Tính diện tích của tam giác đó.
Lời giải chi tiết:
Ta có\(OA = \sqrt {{3^2} + {4^2}} = 5\,\,\,;\) \(OB = \sqrt {{6^2} + 0} = 6\,\,;\)
\(AB = \sqrt {{3^2} + {4^2}} = 5\,\)
Vì OA=AB nên tam giác OAB cân tại A.
Gọi I là trung điểm của OB ta có
\(\left\{ \begin{array}{l}
{x_I} = \frac{{6 + 0}}{2} = 3\\
{y_I} = \frac{{0 + 0}}{2} = 0
\end{array} \right. \Rightarrow I\left( {3;0} \right)\)
và \(AI = \sqrt {{{(3 - 3)}^2} + {{(0 - 4)}^2}} = 4\) .
Diện tích tam giác OAB bằng \(S = {1 \over 2}.AI.OB = {1 \over 2}.4.6 = 12\) .
LG b
Viết phương trình đường tròn ngoại tiếp tam giác OAB.
Lời giải chi tiết:

LG c
Viết phương trình đường phân giác trong tại đỉnh O của tam giác OAB.
Lời giải chi tiết:

Phương trình các đường phân giác tại đỉnh O của tam giác OAB là:
\(\eqalign{
& {{4x - 3y} \over {\sqrt {{4^2} + {3^2}} }} = \pm {y \over {\sqrt {{0^2} + {1^2}} }}\cr & \Leftrightarrow \,\,\,\left[ \matrix{
4x - 3y = 5y\,\,\,\,\,\,\,({d_1}) \hfill \cr 
4x - 3y = - 5y\,\,\,\,({d_2}) \hfill \cr} \right. \cr 
&  \Leftrightarrow \,\,\,\left[ \matrix{
4x - 8y = 0 \hfill \cr 
4x + 2y = 0 \hfill \cr} \right.\cr & \Leftrightarrow \,\,\,\left[ \matrix{
x - 2y = 0 \hfill \cr 
2x + y = 0 \hfill \cr} \right. \cr} \) 
Với \({d_1}:x - 2y = 0\,\,\) ta có \(({x_A} - 2{y_A})({x_B} - 2{y_B}) = - 5.6 = - 30 < 0\).
Vậy A và B khác phía đối với d1 , do đó d1 là đường phân giác trong góc O của tam giác OAB.
LG d
Viết phương trình đường tròn nội tiếp tam giác OAB.
Lời giải chi tiết:
Vì tam giác OAB cân tại A nên AI là phân giác trong góc A của tam giác OAB.
Đường thẳng AI đi qua I(3;0) và nhận \(\overrightarrow {AI} = (0; - 4)\) làm VTCP nên nhận (4;0) làm VTPT.
AI: 4(x-3)+0(y-0)=0 hay x = 3 là phương trình đường thẳng AI.
Tọa độ tâm J của đường tròn nội tiếp tam giác OAB là nghiệm hệ phương trình:
\(\left\{ \matrix{
x = 3 \hfill \cr 
x - 2y = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
x = 3 \hfill \cr 
y = {3 \over 2} \hfill \cr} \right.\)
Vậy \(J\left( {3\,;\,{3 \over 2}} \right)\) .
Bán kính đường tròn nội tiếp tam giác OAB là
\(r = d(J,\,AO) = {{\left| {4.3 - 3.{3 \over 2}} \right|} \over {\sqrt {{3^2} + {4^2}} }} = {3 \over 2}\)
Vậy phương trình đường tròn nội tiếp của tam giác OAB là \({(x - 3)^2} + {\left( {y - {3 \over 2}} \right)^2} = {9 \over 4}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            