Giải Bài 8 trang 69 sách bài tập toán 7 - Kết nối tri thức với cuộc sống>
Hai đa thức A(x) và B(x) thoả mãn:
Đề bài
Hai đa thức A(x) và B(x) thoả mãn:
\(A\left( x \right) + B\left( x \right) = {x^3} - 5{x^2} - 2x + 4;A\left( x \right) - B\left( x \right) = - {x^3} + 3{x^2} - 2\)
a)Tìm A(x), B(x) rồi xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.
b)Tìm giá trị của mỗi đa thức A(x) và B(x) tại x = -1.
Phương pháp giải - Xem chi tiết
-Lấy vế trái cộng vế trái, vế phải cộng vế phải: \(A\left( x \right) + B\left( x \right) + A\left( x \right) - B\left( x \right) \Rightarrow A\left( x \right) \Rightarrow B\left( x \right)\)
-Thay x = -1 vào 2 đa thức tìm được.
Lời giải chi tiết
a)
\(\begin{array}{l}A\left( x \right) + B\left( x \right) = {x^3} - 5{x^2} - 2x + 4\\A\left( x \right) - B\left( x \right) = - {x^3} + 3{x^2} - 2\end{array}\)
Lấy vế trái cộng vế trái, vế phải cộng vế phải, ta được:
\(\begin{array}{l}A\left( x \right) + B\left( x \right) + A\left( x \right) - B\left( x \right) = \left( {{x^3} - 5{x^2} - 2x + 4} \right) + \left( { - {x^3} + 3{x^2} - 2} \right)\\2A\left( x \right) = \left( {{x^3} - {x^3}} \right) + \left( { - 5{x^2} + 3{x^2}} \right) + \left( { - 2x} \right) + \left( {4 - 2} \right)\\2A\left( x \right) = - 2{x^2} - 2x + 2\\A\left( x \right) = - {x^2} - x + 1\end{array}\)
Bậc: 2
Hệ số cao nhất:-1
Hệ số tự do: 1
Mà
\(\begin{array}{l}A\left( x \right) + B\left( x \right) = {x^3} - 5{x^2} - 2x + 4\\ \Rightarrow B\left( x \right) = \left( {{x^3} - 5{x^2} - 2x + 4} \right) - A\left( x \right)\\ \Rightarrow B\left( x \right) = \left( {{x^3} - 5{x^2} - 2x + 4} \right) - \left( { - {x^2} - x + 1} \right)\\ \Rightarrow B\left( x \right) = {x^3} - 5{x^2} - 2x + 4 + {x^2} + x - 1\\ \Rightarrow B\left( x \right) = {x^3} - 4{x^2} - x + 3\end{array}\)
Bậc: 3
Hệ số cao nhất: 1
Hệ số tự do: 3
b)
Ta có:
\(\begin{array}{l}A\left( { - 1} \right) = - {\left( { - 1} \right)^2} - \left( { - 1} \right) + 1 = - 1 + 1 + 1 = 1\\B\left( { - 1} \right) = {1^3} - {4.1^2} - 1 + 3 = 1 - 4 - 1 + 3 = - 1\end{array}\)
- Giải Bài 9 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 10 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 11 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 12 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 13 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải Bài 18 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 17 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 16 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 15 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 14 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 18 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 17 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 16 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 15 trang 71 sách bài tập toán 7 - Kết nối tri thức với cuộc sống
- Giải Bài 14 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống