Giải bài 4 trang 59 SGK Toán 7 tập 2 - Cánh diều


Người ta rót nước từ một can đựng 10 lít sang một bể rỗng có dạng hình lập phương với độ dài cạnh 20cm. Khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là bao nhiêu? Biết rằng 1 lít = 1 dm3

Đề bài

Người ta rót nước từ một can đựng 10 lít sang một bể rỗng có dạng hình lập phương với độ dài cạnh 20cm. Khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là bao nhiêu? Biết rằng 1 lít = 1\(d{m^3}\).

Phương pháp giải - Xem chi tiết

Để tính được thể tích nước còn lại trong can, ta tính thể tích của chiếc bể đến độ cao h. (Đồng nghĩa với việc tính thể tích hình hộp chữ nhật, đáy là hình vuông cạnh 20 cm và chiều cao bằng h). Rồi lấy thể tích của nước trong can ban đầu trừ đi thể tích của chiếc bể đến độ cao h.

Chú ý: Đổi đơn vị cm sang dm.

Lời giải chi tiết

Đổi 20 cm = 2 dm; h cm = \(\dfrac{h}{10}\) dm.

Thể tích của phần nước trong bể khi mực nước cao h (cm) là:

\(2.2.\dfrac{h}{10} = 0,4.h(d{m^3})=0,4.h\) (lít)

Vậy khi mực nước trong bể cao h (cm) thì thể tích nước trong can còn lại là:

\(10 - 0,4.h\) (lít)


Bình chọn:
4.6 trên 24 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí