Giải bài 3.3 trang 45 SGK Toán 7 tập 1 - Kết nối tri thức


Đề bài

Vẽ góc xOy có số đo bằng 60 \(^\circ \). Vẽ tia Om là tia đối của tia Ox.

a) Gọi tên hai góc kề bù có trong hình vừa vẽ.

b) Tính số đo góc yOm.

c) Vẽ tia Ot là tia phân giác của góc xOy. Tính số đo các góc tOy và tOm.

Phương pháp giải - Xem chi tiết

* Vẽ hình theo mô tả

* 2 góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau được gọi là 2 góc kề bù.

* Sử dụng tính chất: + Tổng của 2 góc kề bù là 180 độ.

+ Khi Om là tia phân giác của góc xOy thì \(\widehat {xOm} = \widehat {mOy} = \frac{1}{2}.\widehat {xOy}\)

Lời giải chi tiết

a) Hai góc kề bù có trên hình vừa vẽ là góc xOy và mOy

b) Vì \(\widehat {xOy} + \widehat {yOm} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {yOm} = 180^\circ \\ \Rightarrow \widehat {yOm} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì tia Ot là tia phân giác của góc xOy nên \(\widehat {xOt} = \widehat {tOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.60^\circ  = 30^\circ \)

Mà \(\widehat {tOy}\) và \(\widehat {tOm}\) là hai góc kề bì nên

\(\begin{array}{l}\widehat {tOy} + \widehat {tOm} = 180^\circ \\ \Rightarrow 30^\circ  + \widehat {tOm} = 180^\circ \\ \Rightarrow \widehat {tOm} = 180^\circ  - 30^\circ  = 150^\circ \end{array}\)

Vậy \(\widehat {tOy} = 30^\circ ;\widehat {tOm} = 150^\circ \)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm