Giải bài 1 trang 104 SGK Toán 7 tập 1 - Cánh diều


Đề bài

Quan sát hình 44, biết a // b.

a) So sánh \(\widehat {{M_1}}\) và \(\widehat {{N_3}}\); \(\widehat {{M_4}}\) và \(\widehat {{N_2}}\) ( mỗi cặp góc M1 và N3, M4 và N2 gọi là một cặp góc so le ngoài)

b) Tính: \(\widehat {{M_2}} + \widehat {{N_1}}\) và \(\widehat {{M_3}} + \widehat {{N_4}}\) ( mỗi cặp góc M2 và N1, M3 và N4 gọi là một cặp góc trong cùng phía)

Phương pháp giải - Xem chi tiết

+ 1 đường thẳng cắt 2 đường thẳng song song tạo ra các cặp góc so le trong bằng nhau, đồng vị bằng nhau.

+ 2 góc đối đỉnh thì bằng nhau.

+ 2 góc kề bù có tổng số đo bằng 180\(^\circ \)

Lời giải chi tiết

a) Vì a // b nên \(\widehat {{M_1}} = \widehat {{N_1}}\); \(\widehat {{M_4}} = \widehat {{N_4}}\) ( 2 góc đồng vị) mà \(\widehat {{N_3}} = \widehat {{N_1}}\) ; \(\widehat {{N_4}} = \widehat {{N_2}}\) ( 2 góc đối đỉnh) nên \(\widehat {{M_1}}\) =\(\widehat {{N_3}}\); \(\widehat {{M_4}}\) =\(\widehat {{N_2}}\)

b) Vì a // b nên \(\widehat {{M_2}} = \widehat {{N_2}};\widehat {{M_3}} = \widehat {{N_3}}\) ( 2 góc đồng vị), mà \(\widehat {{N_1}} + \widehat {{N_2}} = 180^\circ ;\widehat {{N_3}} + \widehat {{N_4}} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {{M_2}} + \widehat {{N_1}}\) = 180\(^\circ \); \(\widehat {{M_3}} + \widehat {{N_4}}\)= 180\(^\circ \)

Chú ý:

Nếu đường thẳng c  cắt cả hai đường thẳng song song a và b thì:

+ Hai góc so le ngoài bằng nhau

+ Hai góc trong cùng phía có tổng số đo bằng 180\(^\circ \)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm