 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 2: Hai đường thẳng vuông góc
                                                        Bài 2: Hai đường thẳng vuông góc
                                                    Câu 8 trang 95 SGK Hình học 11 Nâng cao>
a. Cho vecto ... không cùng phương. Chứng minh rằng nếu vecto vuông góc với cả hai vecto
LG a
Cho vecto \(\overrightarrow n \) khác \(\overrightarrow 0 \) và hai vecto \(\overrightarrow a ,\overrightarrow b \) không cùng phương. Chứng minh rằng nếu vecto \(\overrightarrow n \) vuông góc với cả hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) thì ba vecto \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) không đồng phẳng.
Lời giải chi tiết:
Nếu \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) đồng phẳng thì có hai số k, l sao cho \(\overrightarrow n = k.\overrightarrow a + l.\overrightarrow b \)
suy ra \(\overrightarrow n .\overrightarrow n = k\overrightarrow a .\overrightarrow n + l\overrightarrow b .\overrightarrow n = 0 \) \(\Rightarrow {\left| {\overrightarrow n } \right|^2} = {\overrightarrow n ^2} = 0 \)
\(\Rightarrow \left| {\overrightarrow n } \right| = 0 \)
\(\Rightarrow \overrightarrow n = \overrightarrow 0 \) (vô lí)
vậy \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) không đồng phẳng
LG b
Chứng minh rằng ba vecto cùng vuông góc với vecto \(\overrightarrow n \ne \overrightarrow 0 \) thì đồng phẳng. Từ đó suy ra các đường thẳng cùng vuông góc với một đường thẳng thì cùng song song với một mặt phẳng.
Lời giải chi tiết:
Giả sử ba vecto cùng vuông góc với \(\overrightarrow n \) là \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
Tức là \(\overrightarrow a .\overrightarrow n = \overrightarrow b .\overrightarrow n = \overrightarrow c .\overrightarrow n = 0\)
Nếu \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto cùng phương thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
Nếu \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto không cùng phương thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow n \) là ba vecto không đồng phẳng (điều này suy ra từ câu a)
Khi đó \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b + z\overrightarrow n .\)
Nhân vô hướng hai vế với \(\overrightarrow n ,\) ta có \(\overrightarrow c .\overrightarrow n = x\overrightarrow a .\overrightarrow n + y\overrightarrow b .\overrightarrow n + z{\overrightarrow n ^2}\) suy ra \(z{\overrightarrow n ^2} = 0\,hay\,z = 0,\) tức là \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b .\)
Vậy các vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng
Nếu ba đường thẳng d1, d2, d3 cùng vuông góc với một đường thẳng thì do kết quả nêu trên, ta có ba vecto chỉ phương của ba đường thẳng d1,d2 ,d3 đồng phẳng tức là ba đường thẳng d1,d2 ,d3 cùng song song với một mặt phẳng.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            