Câu 41 trang 216 SGK Đại số và Giải tích 11 Nâng cao


Áp dụng công thức (2), tìm giá trị gần đúng

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng công thức (2), tìm giá trị gần đúng của các số sau (làm tròn kết quả đến hàng phần nghìn).

LG a

\({1 \over {0,9995}}\)

Phương pháp giải:

Công thức (2): \(f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x\)

Lời giải chi tiết:

Xét hàm số \(f\left( x \right) = {1 \over x},\,\text{ ta có }\,f'\left( x \right) = {{ - 1} \over {{x^2}}}\)

Đặt \({x_0} = 1,\Delta x =  - 0,0005\) và áp dụng công thức gần đúng

\(f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x\)

Ta được : \({1 \over {{x_0} + \Delta x}} \approx {1 \over {{x_0}}} - {1 \over {x_0^2}}.\Delta x,\)

\( \Rightarrow \frac{1}{{1 + \left( { - 0,0005} \right)}} \approx \frac{1}{1} - \frac{1}{{{1^2}}}.\left( { - 0,0005} \right)\)

Hay : \({1 \over {0,9995}} \approx 1 + 0,0005 = 1,0005\)

LG b

 \(\sqrt {0,996} \)

Lời giải chi tiết:

Xét

\(\eqalign{  & f\left( x \right) = \sqrt x \,\text{ ta có }\,f'\left( x \right) = {1 \over {2\sqrt x }}  \cr  & {x_0} = 1,\Delta x =  - 0,004  \cr  & f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x  \cr  & \Rightarrow \sqrt {{x_0} + \Delta x}  \approx \sqrt {{x_0}}  + \frac{1}{{2\sqrt {{x_0}} }}\Delta x \cr &\Leftrightarrow \sqrt {1 + \left( { - 0,004} \right)}  \approx \sqrt 1  + \frac{1}{{2\sqrt 1 }}.\left( { - 0,004} \right)\cr &  \Leftrightarrow \sqrt {0,996}  \approx 1 - {1 \over 2}.0,004 = 0,998 \cr} \)

LG c

\(\cos 45^\circ 30'\)

Lời giải chi tiết:

Xét hàm số \(f(x) = \cos x\), ta có: \(f'\left( x \right) =  - \sin x.\)

Đặt \({x_0} = {\pi  \over 4},\Delta x = {\pi  \over {360}}\)

(Vì \({\pi  \over {360}} = 30'\) ) và áp dụng công thức gần đúng trên, ta được :

  \(\eqalign{  & \cos \left( {{\pi  \over 4} + {\pi  \over {360}}} \right) \approx \cos {\pi  \over 4} - \sin \left( {{\pi  \over 4}} \right).{\pi  \over {360}}  \cr  & \text{Vậy }\,\cos 45^\circ 30' \approx {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2}.{\pi  \over {360}} \approx 0,7009 \cr} \)

Loigiaihay.com


Bình chọn:
3.6 trên 7 phiếu

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.