Lý thuyết Tọa độ của vecto - SGK Toán 10 Cánh diều>
A. Lý thuyết 1. Tọa độ của một điểm
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
A. Lý thuyết
1. Tọa độ của một điểm

|
Để xác định tọa độ của một điểm M tùy ý trong mặt phẳng tọa độ Oxy, ta làm như sau: + Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số a. Số a là hoành độ của điểm M. + Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số b. Số b là tung độ của điểm M. Cặp số (a;b) là tọa độ của điểm M trong mặt phẳng tọa độ Oxy. Ta ký hiệu là M(a;b). |
2. Tọa độ của một vecto
| Tọa độ của điểm M được gọi là tọa độ của vecto \(\overrightarrow {OM} \). |
\(\overrightarrow {OM} = (a;b)\) thì a là hoành độ, b là tung độ của \(\overrightarrow {OM} \).

Chú ý: Trong mặt phẳng tọa độ Oxy, ta có:
+ \(\overrightarrow {OM} = (a;b) \Leftrightarrow M(a;b)\).
+ Vecto \(\overrightarrow i (1;0)\), \(\overrightarrow j (0;1)\) có điểm gốc O lần lượt là các vecto đơn vị trên trục Ox, Oy.

| Với mỗi vecto \(\overrightarrow u \) trong mặt phẳng tọa độ Oxy, tọa độ của vecto \(\overrightarrow u \) là tọa độ của điểm A, trong đó A là điểm sao cho \(\overrightarrow {OA} = \overrightarrow u \). |
Ta có định lí sau:
|
Trong mặt phẳng tọa độ Oxy, nếu \(\overrightarrow u = (a;b)\) thì \(\overrightarrow u = a\overrightarrow i + b\overrightarrow j \). Ngược lại, nếu \(\overrightarrow u = a\overrightarrow i + b\overrightarrow j \) thì \(\overrightarrow u = (a;b)\). |
Chú ý: Với \(\overrightarrow a = ({x_1};{y_1})\) và \(\overrightarrow b = ({x_2};{y_2})\), ta có: \(\overrightarrow a = \overrightarrow b \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\end{array} \right.\).
Như vậy, mỗi vecto hoàn toàn được xác định khi biết tọa độ của nó.
3. Liên hệ giữa tọa độ của điểm và tọa độ của vecto
|
Trong mặt phẳng tọa độ Oxy, cho hai điểm \(A({x_A};{y_A})\) và \(B({x_B};{y_B})\). Ta có: \(\overrightarrow {AB} = ({x_B} - {x_A};{y_B} - {y_A})\). |
B. Bài tập
Bài 1: Trong mặt phẳng tọa độ Oxy, cho các điểm M, N, P, Q. Tìm tọa độ các vecto \(\overrightarrow {OM} \), \(\overrightarrow {ON} \), \(\overrightarrow {OP} \), \(\overrightarrow {OQ} \).

Giải:
Từ hình vẽ, ta có: M(-4;3), N(3;0), P(5;-2), Q(0;-3).
Do đó: \(\overrightarrow {OM} = ( - 4;3)\), \(\overrightarrow {ON} = (3;0)\), \(\overrightarrow {OP} = (5; - 2)\), \(\overrightarrow {OQ} = (0; - 3)\).
Bài 2: Tìm tọa độ của các vecto \(\overrightarrow a \), \(\overrightarrow b \) trong hình.

Giải:
Ta có:
\(\overrightarrow a = \overrightarrow {OA} \) và A(2;2); tọa độ vecto \(\overrightarrow {OA} \) chính là tọa độ điểm A nên \(\overrightarrow a = (2;2)\).
\(\overrightarrow b = \overrightarrow {OB} \) và A(1;-3); tọa độ vecto \(\overrightarrow {OB} \) chính là tọa độ điểm B nên \(\overrightarrow b = (1; - 3)\).

Bài 3: Trong mặt phẳng tọa độ Oxy, cho điểm A(1;2) và vecto \(\overrightarrow u = (3; - 4)\).
a) Biểu diễn vecto \(\overrightarrow u \) qua hai vecto \(\overrightarrow i \) và \(\overrightarrow j \).
b) Biểu diễn vecto \(\overrightarrow {OA} \) qua hai vecto \(\overrightarrow i \) và \(\overrightarrow j \).
Giải:
a) Vì \(\overrightarrow u = (3; - 4)\) nên \(\overrightarrow u = 3\overrightarrow i + ( - 4)\overrightarrow j = 3\overrightarrow i - 4\overrightarrow j \).
b) Vì điểm A có tọa độ là (1;2) nên \(\overrightarrow {OA} = (1;2)\). Do đó:
\(\overrightarrow {OA} = 1\overrightarrow i + 2\overrightarrow j = \overrightarrow i + 2\overrightarrow j \).
Bài 4: Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(1;1), B(4;3), C(-1;-2).
a) Tìm tọa độ của vecto \(\overrightarrow {AB} \).
b) Tìm tọa độ của điểm D sao cho tứ giác ABCD là hình bình hành.
Giải:
a) Ta có: \(\overrightarrow {AB} = (4 - 1;3 - 1)\). Vậy \(\overrightarrow {AB} = (3;2)\).
b) Gọi tọa độ của điểm D là \(({x_D};{y_D})\), ta có: \(\overrightarrow {DC} = ( - 1 - {x_D}; - 2 - {y_D})\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow {DC} = \overrightarrow {AB} \Leftrightarrow \overrightarrow {DC} = (3;2) \Leftrightarrow \left\{ \begin{array}{l} - 1 - {x_D} = 3\\ - 2 - {y_D} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = - 4\\{y_D} = - 4\end{array} \right.\).
Vậy D(-4;-4).

Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều




