Giải mục III trang 69, 70 SGK Toán 10 tập 1 - Cánh diều


Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R = 6 và có các góc B = 65, C = 85 Tính độ dài cạnh BC.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 11

Cho \(\alpha \) là góc vuông. Chứng minh \(\frac{a}{{\sin \alpha }} = 2R.\)

Phương pháp giải:

Bước 1: Xác định đường tròn ngoài tiếp tam giác, từ đó suy ra bán kính R

Bước 2: Tính \(\frac{a}{{\sin \alpha }}\) rồi so sánh với 2R.

Lời giải chi tiết:

Xét tam giác ABC có \(\widehat A = \alpha  = {90^o}\)

Gọi O là trung điểm của BC. Khi đó: \(OA = OB = OC = \frac{1}{2}BC\)

Do đó đường tròn ngoại tiếp tam giác ABC là (O) bán kính \(R = \frac{{BC}}{2}\)

\( \Rightarrow \frac{a}{{\sin \alpha }} = \frac{{BC}}{{\sin {{90}^o}}} = BC = 2R\) (đpcm)

Luyện tập – vận dụng 3

Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R = 6 và có các góc \(\widehat B = {65^o},\widehat C = {85^o}.\) Tính độ dài cạnh BC.

Phương pháp giải:

Bước 1: Tính góc \(\widehat A\)

Bước 2: Áp dụng định lí sin trong tam giác ABC: \(\frac{{BC}}{{\sin A}} = 2R\)

Lời giải chi tiết:

Ta có: \(\widehat B = {65^o},\widehat C = {85^o}.\)

\( \Rightarrow \widehat A = {180^o} - \left( {{{65}^o} + {{85}^o}} \right) = {30^o}.\)

Áp dụng định lí sin trong tam giác ABC, ta có:

\(\frac{{BC}}{{\sin A}} = 2R \Rightarrow BC = 2R.\sin A\)

Mà \(\widehat A = {30^o},R = 6.\)

\( \Rightarrow BC = 2.6.\sin {30^o} = 6.\)

Vậy BC = 6.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!