Giải bài 2 trang 71 SGK Toán 10 tập 1 – Cánh diều>
Cho tam giác ABC cóB = 75, C =45 và BC = 50. Tính độ dài cạnh AB.
Đề bài
Cho tam giác ABC có \(\widehat B = {75^o},\widehat C = {45^o}\) và BC = 50. Tính độ dài cạnh AB.
Phương pháp giải - Xem chi tiết
Bước 1: Tính \(\widehat A\)
Bước 2: Tính AB, bằng cách áp dụng định lí sin trong tam giác ABC:
Lời giải chi tiết
Ta có: \(\widehat B = {75^o},\widehat C = {45^o}\)\( \Rightarrow \widehat A = {180^o} - \left( {{{75}^o} + {{45}^o}} \right) = {60^o}\)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)
\( \Rightarrow AB = \sin C.\frac{{BC}}{{\sin A}} = \sin {45^o}.\frac{{50}}{{\sin {{60}^o}}} \approx 40,8\)
Vậy độ dài cạnh AB là 40,8.
- Giải bài 3 trang 71 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 4 trang 71 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 5 trang 71 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 6 trang 71 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 7 trang 71 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm