Giải bài 9.11 trang 66 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán để ăn trưa. a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu. b) Tính xác suất của các biến cố sau: E: “Hai người cùng vào một quán". F: “Cả hai không chọn quán C.

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán để ăn trưa.

a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.

b) Tính xác suất của các biến cố sau:

E: “Hai người cùng vào một quán".

F: “Cả hai không chọn quán C.

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

a) Sơ đồ hình cây:

 

b) \(\Omega  = \left\{ {{\rm{AA}},AB,AC,BA,BB,BC,CA,CB,CC} \right\}\).

Ta có \(E = \left\{ {{\rm{AA}},BB,CC} \right\}\). Vậy \(P\left( E \right) = \frac{3}{9} = \frac{1}{3}\).

\(F = \left\{ {{\rm{AA}},AB,BA,BB} \right\}\). Vậy \(P\left( F \right) = \frac{4}{9}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí