Giải Bài 9 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo


Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

Tổng hợp đề thi giữa kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM (H ∈ CM). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng \(\widehat {EBH} = \widehat {ACM}\)

c) Chứng minh rằng \(EB \bot BC\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a)Ta chứng minh \(\Delta \)BME có 2 cạnh bên hoặc 2 góc đáy bằng nhau thông qua việc chứng minh 2 tam giác EHB và MHB bằng nhau.

b)Ta chứng minh \(\widehat {EBH} = \widehat {ACM}\)do cùng = \(\widehat {MBH}\)

c)Ta chứng minh\(\widehat {EBH} + \widehat {BCE} = {90^o}\)

Lời giải chi tiết

a)Xét \(\Delta \)BHE và \(\Delta \)BHM có :

BH là cạnh chung

EH = HM (do M đối xứng E qua H)

\(\widehat {BHE} = \widehat {BHM} = {90^o}\)

\( \Rightarrow \)\(\Delta \)BHE = \(\Delta \)BHM (c-g-c)

\( \Rightarrow \)BM = BE (cạnh tương ứng)

và \(\widehat {EBH} = \widehat {MBH}\)(góc tương ứng) (1)

\( \Rightarrow \)\(\Delta \)BEM cân tại B (2 cạnh bên bằng nhau)

b)Xét \(\Delta \)BHM vuông tại H \( \Rightarrow \widehat {BMH} + \widehat {MBH} = {90^o}\)

Xét \(\Delta \)AMC vuông tại A \( \Rightarrow \widehat {AMC} + \widehat {MCA} = {90^o}\)

Mà \(\widehat {HMB} = \widehat {AMC}\)(2 góc đối đỉnh)

\( \Rightarrow \widehat {MCA} = \widehat {MBH} = {90^o} - \widehat {AMC} = {90^o} - \widehat {HMB}\)(2)

Từ (1) và (2) \( \Rightarrow \widehat {EBH} = \widehat {ACM}\)

c)Vì \(\widehat {BCM} = \widehat {ACM}\) (do CM là phân giác góc C)

\( \Rightarrow \widehat {EBH} = \widehat {BCM}\)(cùng bằng \(\widehat {AMC}\)) (3)

Xét \(\Delta \)EHB vuông tại H có \(\widehat {EBH} + \widehat {BEH} = {90^o}\)(4)

Từ (3) và (4) \( \Rightarrow \widehat {BCM} + \widehat {BEH} = {90^o}\)

\( \Rightarrow \widehat {EBC} = {90^o} \Rightarrow EB \bot BC\) 


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí