Giải bài 5 trang 103 SGK Toán 10 tập 1 – Chân trời sáng tạo


Đề bài

Cho \(\overrightarrow a ,\overrightarrow b \) là hai vectơ khác vectơ \(\overrightarrow 0 \). Trong trường hợp nào thì đẳng thức sau đúng?

a) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|\);

b) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right|\) .

Phương pháp giải - Xem chi tiết

Sử dụng tính chất \({\overrightarrow a ^2} = {\left| {\overrightarrow a } \right|^2}\)

Lời giải chi tiết

a) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right|} \right)^2} \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left| {\overrightarrow a } \right|^2} + 2\overrightarrow a .\overrightarrow b  + {\left| {\overrightarrow b } \right|^2} = {\left| {\overrightarrow a } \right|^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right| + {\left| {\overrightarrow b } \right|^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 2\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|\)

\( \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 0^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| \Leftrightarrow \overrightarrow a , \,\overrightarrow b \) cùng hướng.

b) \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow {\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\left| {\overrightarrow a  - \overrightarrow b } \right|^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a  + \overrightarrow b } \right)^2} = {\left( {\overrightarrow a  - \overrightarrow b } \right)^2}\)

\( \Leftrightarrow {\left( {\overrightarrow a } \right)^2} + 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2} = {\left( {\overrightarrow a } \right)^2} - 2\overrightarrow a .\overrightarrow b  + {\left( {\overrightarrow b } \right)^2}\)

\( \Leftrightarrow 2\overrightarrow a .\overrightarrow b  =  - 2\overrightarrow a .\overrightarrow b  \Leftrightarrow 4\overrightarrow a .\overrightarrow b  = 0\)

\( \Leftrightarrow \overrightarrow a .\overrightarrow b  = 0 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \)

Vậy \(\left| {\overrightarrow a  + \overrightarrow b } \right| = \left| {\overrightarrow a  - \overrightarrow b } \right| \Leftrightarrow \overrightarrow a ,\overrightarrow b \) vuông góc với nhau.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.