Giải bài 4.13 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống>
Cho tam giác ABC. Gọi D,E tương ứng là trung điểm của BC,CA.
Đề bài
Cho tam giác \(ABC.\) Gọi \(D,\,\,E\) tương ứng là trung điểm của \(BC,\,\,CA.\) Hãy biểu thị các vectơ \(\overrightarrow {AB} ,\,\,\overrightarrow {BC} ,\,\,\overrightarrow {CA} \) theo các vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BE} .\)
Phương pháp giải - Xem chi tiết
- Tính vectơ \(\overrightarrow {DE} \)
- Tính \(\overrightarrow {AB} \): \(\overrightarrow {AB} = \overrightarrow {AD} + \overrightarrow {DE} + \overrightarrow {EB} \)
- Tính \(\overrightarrow {BC} \): \(\overrightarrow {BC} = 2\overrightarrow {BD} = 2\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
- Tính \(\overrightarrow {CA} \): \(\overrightarrow {CA} = \overrightarrow {DA} - \overrightarrow {DC} = - \overrightarrow {AD} - \overrightarrow {DC} \)
Lời giải chi tiết
Ta có: \(DE\) là đường trung bình của \(\Delta ABC\)
\( \Rightarrow \) \(\overrightarrow {DE} = - \frac{1}{2}\overrightarrow {AB} \)
Ta có: \(\overrightarrow {AB} = \overrightarrow {AD} + \overrightarrow {DE} + \overrightarrow {EB} = \overrightarrow {AD} - \frac{1}{2}\overrightarrow {AB} + \overrightarrow {EB} \)
\(\begin{array}{l} \Rightarrow \overrightarrow {AB} + \frac{1}{2}\overrightarrow {AB} = \overrightarrow {AD} - \overrightarrow {BE} \\ \Rightarrow \frac{3}{2}\overrightarrow {AB} = \overrightarrow {AD} - \overrightarrow {BE} \\ \Rightarrow \overrightarrow {AB} = \frac{2}{3}\left( {\overrightarrow {AD} - \overrightarrow {BE} } \right) = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \end{array}\)
Ta có: \(\overrightarrow {BC} = 2\overrightarrow {BD} = 2\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\(\begin{array}{l} = 2\left( {\overrightarrow {AD} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} } \right)\\ = 2\left( {\frac{1}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} } \right) = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \end{array}\)
Ta có: \(\overrightarrow {CA} = \overrightarrow {DA} - \overrightarrow {DC} = - \overrightarrow {AD} - \overrightarrow {DC} \)
\(\begin{array}{l} = - \overrightarrow {AD} - \frac{1}{2}\left( {\frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} } \right)\\ = - \overrightarrow {AD} - \frac{1}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \\ = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \end{array}\)
- Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.15 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.16 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.17 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 4.18 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay