Giải bài 4 trang 87 SGK Toán 7 tập 2 - Cánh diều>
Cho
Đề bài
Cho \(\Delta ABC = \Delta MNP\). Gọi D, E lần lượt là trung điểm của BC và CA; Q, R lần lượt là trung điểm của NP và PM. Chứng minh:
a) AD = MQ;
b) DE = QR.
Phương pháp giải - Xem chi tiết
a) Chứng minh tam giác ABD bằng tam giác MNQ.
b) Chứng minh tam giác DEC bằng tam giác QRP.
Lời giải chi tiết
a) Xét hai tam giác ABD và tam giác MNQ:
AB = MN (do \(\Delta ABC = \Delta MNP\)).
\(\widehat {ABD} = \widehat {MNQ}\) (\(\widehat {ABD} = \widehat {MNQ}\)).
BD = NQ (\(\dfrac{1}{2}BC = \dfrac{1}{2}NP\))
BC = NP (do \(\Delta ABC = \Delta MNP\)).
Vậy \(\Delta ABD = \Delta MNQ\)(c.g.c) nên AD = MQ ( 2 cạnh tương ứng)
b) Vì \(\Delta ABC = \Delta MNP\) nên BC = NP ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}BC = \dfrac{1}{2}NP\) hay DC = QP
Vì \(\Delta ABC = \Delta MNP\) nên AC = MP ( 2 cạnh tương ứng) . Do đó, \(\dfrac{1}{2}AC = \dfrac{1}{2}MP\) hay EC = RP
Xét hai tam giác DEC và tam giác QRP:
DC = QP
\(\widehat {ECD} = \widehat {RPQ}\)(\(\Delta ABC = \Delta MNP\))
EC = RP
Vậy \(\Delta DEC = \Delta QRP\)(c.g.c) nên DE = QR ( 2 cạnh tương ứng)
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Giải bài 3 trang 86 SGK Toán 7 tập 2 - Cánh diều
- Giải bài 2 trang 86 SGK Toán 7 tập 2 - Cánh diều
- Giải bài 1 trang 86 SGK Toán 7 tập 2 - Cánh diều
- Giải mục I trang 84, 85 SGK Toán 7 tập 2 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều
- Tạo đồ dùng dạng hình lăng trụ đứng SGK Toán 7 Cánh diều tập 1
- Giải câu hỏi trang 39, 40 SGK Toán 7 Cánh diều tập 2
- Lý thuyết Trường hợp bằng nhau thứ ba của tam giác: góc-cạnh-góc SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ hai của tam giác: cạnh-góc-cạnh SGK Toán 7 - Cánh diều
- Lý thuyết Trường hợp bằng nhau thứ nhất của tam giác: cạnh-cạnh-cạnh SGK Toán 7 - Cánh diều