Giải bài 2 trang 47 sách bài tập toán 10 - Chân trời sáng tạo


Khai triển và rút gọn biểu thức

Đề bài

Khai triển và rút gọn biểu thức \(\left( {x - 2} \right){\left( {2x + 1} \right)^4}\)

Phương pháp giải - Xem chi tiết

Khai triển \({\left( {a + b} \right)^4} = C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4}\)

rồi rút gọn biểu thức \(\left( {x - 2} \right){\left( {2x + 1} \right)^4}\)

Lời giải chi tiết

+ Khai triển:

\(\begin{array}{l}{\left( {2x + 1} \right)^4} = C_4^0{\left( {2x} \right)^4} + C_4^1{\left( {2x} \right)^3} + C_4^2{\left( {2x} \right)^2} + C_4^3{\left( {2x} \right)^1} + C_4^4{\left( {2x} \right)^0}\\ = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\end{array}\)

 \( \Rightarrow \left( {x - 2} \right){\left( {2x + 1} \right)^4} = \left( {x - 2} \right)\left( {16{x^4} + 32{x^3} + 24{x^2} + 8x + 1} \right)\)

\(\begin{array}{l} = 16{x^5} - 32{x^4} + 32{x^4} - 64{x^3} + 24{x^3} - 48{x^2} + 8{x^2} - 16x + x - 2\\ = 16{x^5} - 40{x^3} - 40{x^2} - 15x - 2\end{array}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí