Giải bài 1.56 trang 28 sách bài tập toán 11 - Kết nối tri thức với cuộc sống>
Chứng minh các biểu thức sau không phụ thuộc vào x
Tổng hợp đề thi giữa kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Chứng minh các biểu thức sau không phụ thuộc vào x
a) \(A = \sin \left( {\frac{\pi }{4} + x} \right) - \cos \left( {\frac{\pi }{4} - x} \right)\);
b) \(B = \cos \left( {\frac{\pi }{6} - x} \right) - \sin \left( {\frac{\pi }{3} + x} \right)\);
c) \(C = {\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);
d) \(D = \frac{{1 - \cos 2x + \sin 2x}}{{1 + \cos 2x + \sin 2x}}.\cot x\).
Phương pháp giải - Xem chi tiết
Áp dụng công thức góc liên quan, công thức biến tích thành tổng, công thức góc nhân đôi, công thức lượng giác cơ bản để biến đổi linh hoạt.
\(\cos \left( {\frac{\pi }{2} - x} \right) = \sin x\)
\(\cos a\cos b = \frac{1}{2}\left( {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right)\)
\(\cos 2a = 1 - 2{\sin ^2}a = 2{\cos ^2}a - 1\)
\(\sin 2a = 2\sin a\cos a\)
\(\tan a = \frac{{\sin a}}{{\cos a}}\,;\,\,\cot a = \frac{{\cos a}}{{\sin a}}\); \(\tan a.\cot a = 1\).
Lời giải chi tiết
a) Ta có
\(\begin{array}{l}A = \sin \left( {\frac{\pi }{4} + x} \right) - \cos \left( {\frac{\pi }{4} - x} \right) = \cos \left( {\frac{\pi }{2} - \left( {\frac{\pi }{4} + x} \right)} \right) - \cos \left( {\frac{\pi }{4} - x} \right)\\\,\,\,\,\,\, = \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{\pi }{4} - x} \right) = 0\end{array}\)
b) Ta có
\(\begin{array}{l}B = \cos \left( {\frac{\pi }{6} - x} \right) - \sin \left( {\frac{\pi }{3} + x} \right) = \cos \left( {\frac{\pi }{6} - x} \right) - \cos \left( {\frac{\pi }{2} - \left( {\frac{\pi }{3} + x} \right)} \right)\\\,\,\,\,\, = \cos \left( {\frac{\pi }{6} - x} \right) - \cos \left( {\frac{\pi }{6} - x} \right) = 0\end{array}\)
c) Ta có
\(\begin{array}{l}C = {\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\\\,\,\,\,\, = {\sin ^2}x + \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{3} - x + \frac{\pi }{3} + x} \right) + \cos \left( {\frac{\pi }{3} - x - \left( {\frac{\pi }{3} + x} \right)} \right)} \right]\\\,\,\,\,\, = {\sin ^2}x + \frac{1}{2}\left[ {\cos \frac{{2\pi }}{3} + \cos ( - 2x)} \right] = {\sin ^2}x + \frac{1}{2}\left( { - \frac{1}{2} + \cos 2x} \right)\\\,\,\,\,\, = {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\left( {1 - 2{{\sin }^2}x} \right) = \frac{1}{4}\end{array}\)
d) Ta có
\(\begin{array}{l}D = \frac{{1 - \cos 2x + \sin 2x}}{{1 + \cos 2x + \sin 2x}}.\cot x\\\,\,\,\,\,\, = \frac{{1 - (1 - 2{{\sin }^2}x) + 2\sin x\cos x}}{{1 + 2{{\cos }^2}x - 1 + 2\sin x\cos x}}.\cot x\\\,\,\,\,\,\, = \frac{{2{{\sin }^2}x + 2\sin x\cos x}}{{2{{\cos }^2}x + 2\sin x\cos x}}.\cot x\\\,\,\,\,\,\, = \frac{{2\sin x(\sin x + \cos x)}}{{2\cos x(\cos x + \sin x)}}.\cot x = \frac{{\sin x}}{{\cos x}}.\cot x = \tan x.\cot x = 1\end{array}\)
- Giải bài 1.57 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.58 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.59 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.60 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 1.61 trang 29 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 43 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 42 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 41 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống
- Giải bài 39 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống