Giải bài 1.36 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Hãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp.

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Hãy viết các tập hợp sau bằng cách liệt kê các phần tử của tập hợp.

\(A = \left\{ {\left. {x \in \mathbb{Q}} \right|\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0} \right\};\)

\(B = \left\{ {\left. {x \in \mathbb{N}} \right|{x^2} > 2\,\, \rm{và} \,\,x < 4} \right\}\)

 

Phương pháp giải - Xem chi tiết

-  Giải phương trình \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {2{x^2} - 3x + 1} \right) = 0\) và \(\left\{ {\begin{array}{*{20}{c}}{{x^2} > 2}\\{x < 4}\end{array}.} \right.\)

-  Liệt kê các phần tử thỏa mãn tập hợp A và tập hợp B.

Lời giải chi tiết

+) Giải phương trình: \(\left( {2x + 1} \right)\left( {{x^2} + x - 1} \right)\left( {{x^2} - 3x + 1} \right) = 0\)

\( \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{2x + 1 = 0}\\{{x^2} + x - 1 = 0}\\{2{x^2} - 3x + 1 = 0}\end{array}}\right.  \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = \frac{{ - 1}}{2}}\\{x = \frac {-1 + \sqrt 5}{2}}\\{x = \frac {-1 - \sqrt 5}{2}}\\{x = 1}\\{x = \frac{1}{2}}\end{array}} \right.\)

Vì \(x \in \mathbb{Q}\) nên chỉ có \(x = \frac{{ - 1}}{2},x = \frac{1}{2}\) và \(x = 1\)  thỏa mãn.

\( \Rightarrow \,\,A = \left\{ {\frac{{ - 1}}{2};\frac{1}{2};1} \right\}\)

+) Giải hệ phương trình 

\(\begin{array}{*{20}{l}}
{\left\{ {\begin{array}{*{20}{c}}
{{x^2} > 2}\\
{x < 4}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
{\left[ {\begin{array}{*{20}{l}}
{x > \sqrt 2 }\\
{x < - \sqrt 2 }
\end{array}} \right.}\\
{x < 4}
\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
{\sqrt 2 < x < 4}\\
{x < - \sqrt 2 }
\end{array}} \right.} \right.}\\
{ \rm { Vì } \, x \in \mathbb N \Rightarrow x \in \left\{ {2;3} \right\}}\\
{ \Rightarrow B = \left\{ {2;3} \right\}}
\end{array}\)


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí