Giải bài 10 trang 81 sách bài tập toán 10 - Chân trời sáng tạo


Độ dài lớn nhất của đoạn OB bằng:

Đề bài

Cho \(\widehat {xOy} = 30^\circ \). Gọi A B là hai điểm di động lần lượt trên Ox Oy sao cho \(AB = 1\). Độ dài lớn nhất của đoạn OB bằng:

A. 1,5 

B. \(\sqrt 3 \)   

C. \(2\sqrt 2 \) 

D. 2

Phương pháp giải - Xem chi tiết

Áp dụng định lí sin trong tam giác OAB để tính OB.

Lời giải chi tiết

Ta có: \(\frac{{AB}}{{\sin O}} = \frac{{OB}}{{\sin A}} \Rightarrow OB = \sin A.\frac{1}{{\sin {{30}^ \circ }}} = 2\sin A \le 2\)

Dấu bằng xảy ra khi \(\sin A = 1\) hay \(AB \bot Oy\)

Chọn D.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí