Giải bài 1 trang 16 sách bài tập toán 10 - Chân trời sáng tạo


Xác định trong các trường hợp sau:

Đề bài

Xác định \(A \cap B,A \cup B,A\backslash B,B\backslash A\) trong các trường hợp sau:

a) \(A = \left\{ {a;b;c;d} \right\},B = \left\{ {a;c;e} \right\}\)

b) \(A = \left\{ {x\left| {{x^2} - 5x - 6 = 0} \right.} \right\},B = \left\{ {x\left| {{x^2} = 1} \right.} \right\}\)

c) \(A= \{ x \in \mathbb N | x\) là số lẻ, \(x<8\) , \(B =\{ x \in \mathbb N | x\) là các ước của 12}

Phương pháp giải - Xem chi tiết

Bước 1: Viết lại tập hợp bằng cách liệt kê phần tử

Bước 2:

\(A \cap B = \{x |x \in A\) và \(x\in B\}\)

\(A \cup B = \{x |x \in A\) hoặc \(x\in B\}\)

\(A\backslash B = \{x |x \in A\) và \(x\notin B\}\)

Lời giải chi tiết

a) \(A \cap B = \left\{ {a;c} \right\},A \cup B = \left\{ {a;b;c;d;e} \right\}\)

\(A\backslash B = \left\{ {b;d} \right\},B\backslash A = \left\{ e \right\}\)

b) Giải các phương trình ta có: \(A = \left\{ { - 1;6} \right\},B = \left\{ { - 1;1} \right\}\)\(A \cap B = \left\{ { - 1} \right\},A \cup B = \left\{ { - 1;1;6} \right\}\)

\(A\backslash B = \left\{ 6 \right\},B\backslash A = \left\{ 1 \right\}\)

c) Ta xác định được \(A = \left\{ {1;3;5;7} \right\},B = \left\{ {1;2;3;4;6;12} \right\}\)

\(A \cap B = \left\{ {1;3} \right\},A \cup B = \left\{ {1;2;3;4;5;6;7;12} \right\}\)

\(A\backslash B = \left\{ {5;7} \right\},B\backslash A = \left\{ {2;4;6;12} \right\}\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí