Giải mục III trang 99, 100 SGK Toán 10 tập 2 - Cánh diều>
Viết phương trình các parabol sau đây dưới dạng chính tắc:
Hoạt động 5
Lấy đường thẳng \(\Delta \)và một điểm F không thuộc \(\Delta \). Lấy một ê ke ABC (vuông ở A) và một đoạn dây không đàn hồi, có độ dài bằng AB. Đính một đầu dây vào điểm F, đầu kia vào đỉnh B của ê ke. Đặt ê ke sao cho cạnh AC nằm trên \(\Delta \), lấy đầu bút chì (kí hiệu là điểm M) ép sát sợi dây vào cạnh AB và giữ căng sợi dây. Lúc này, sợi dây chính là đường gấp khúc BMF. Cho cạnh AC của ê ke trượt trên \(\Delta \) (Hình 55). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường parabol. Khi M thay đổi, có nhận xét gì về khoảng cách từ M đến F và khoảng cách từ M đến đường thẳng \(\Delta \)?
Lời giải chi tiết:
Khi M thay đổi, ta có: \(MA + MB = MF + MB\left( { = AB} \right)\). Do đó \(MA = MF\).
Luyện tập – vận dụng 3
Viết phương trình các parabol sau đây dưới dạng chính tắc:
a) \(x = \frac{{{y^2}}}{4}\)
b) \(x-y^2=0\)
Lời giải chi tiết:
a) \(x = \frac{{{y^2}}}{4} \Leftrightarrow {y^2} = 4x\)
Vậy dạng chính tắc của parabol là: \({y^2} = 4x\)
b) \(x - {y^2} = 0 \Leftrightarrow {y^2} = x\)
Vậy dạng chính tắc của parabol là: \({y^2} = x\)
- Giải bài 1 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 3 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 4 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 5 trang 102 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều