Giải bài 11 trang 102 SGK Toán 10 tập 2 – Cánh diều>
Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Phương pháp giải - Xem chi tiết
Phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\), trong đó tiêu điểm là \(F\left( {\frac{p}{2};0} \right)\) và phương trình đường chuẩn là: \(x + \frac{p}{2} = 0\).
Lời giải chi tiết
Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)
Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)
Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)
Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)
- Giải bài 10 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 9 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 8 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 7 trang 102 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 6 trang 102 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục