Giải bài 7.32 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


ết phương trình chính tắc của hypebol

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Viết phương trình chính tắc của hypebol \(\left( H \right)\), biết \(\left( H \right)\) đi qua điểm \(M\left( {3\sqrt 2 ; - 4} \right)\) và có một tiêu điểm \({F_2}\left( {5;0} \right)\)

Phương pháp giải - Xem chi tiết

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Lời giải chi tiết

+ Phương trình chính tắc của \(\left( H \right)\) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\)

+ Do \(\left( H \right)\) có 1 tiêu điểm \({F_2}\left( {5;0} \right)\) nên ta có: \(c = 5 \Rightarrow {a^2} + {b^2} = {c^2} = 25 \Rightarrow {a^2} = 25 - {b^2}\)

+ \(\left( H \right)\) đi qua \(M\left( {3\sqrt 2 ;4} \right)\) nên ta có: \(\frac{{{{\left( {3\sqrt 2 } \right)}^2}}}{{{a^2}}} - \frac{{{4^2}}}{{{b^2}}} = 1 \Rightarrow \frac{{18}}{{{a^2}}} - \frac{{16}}{{{b^2}}} = 1\)

+ Đặt \(t = {b^2} > 0 \Rightarrow {a^2} = 25 - t\)

\(\begin{array}{l} \Rightarrow \frac{{18}}{{25 - t}} - \frac{{16}}{t} = 1 \Rightarrow 18t - 16\left( {25 - t} \right) = t\left( {25 - t} \right)\\ \Rightarrow {t^2} + 9t - 400 = 0 \Rightarrow \left[ \begin{array}{l}t = 16\left( {TM} \right)\\t =  - 25\left( L \right)\end{array} \right.\end{array}\)

\( \Rightarrow {b^2} = t = 16,{a^2} = 25 - t = 9\)

Vậy phương trình chính tắc của \(\left( H \right)\) là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)


Bình chọn:
3.7 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí