
Đề bài
Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng. Góc nghiêng của phương quan sát từ các vị trí A, B tới ngọn hải đăng với đường đi của người quan sát là \({45^o}\) và \({75^o}\). Biết khoảng cách giữa hai vị trí A, B là 30 m (Hình 32). Ngọn hải đăng cách bờ biển bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Phương pháp giải - Xem chi tiết
Gọi C là vị trí ngọn hải đăng, H là hình chiếu của C trên AB.
Bước 1: Tính góc ACB, ABC.
Bước 2: Tính AC bằng cách áp dụng định lí sin trong tam giác ABC: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)
Bước 3: Tính AH bằng công thức: AH = AC. cos A.
Lời giải chi tiết
Gọi C là vị trí ngọn hải đăng và H là hình chiếu của C trên AB.
Khi đó CH là khoảng cách từ ngọn hải đăng tới bờ biển.
Ta có: \(\widehat {ABC} = {180^o} - \widehat {CBH} = {180^o} - {75^o} = {115^o}\)
\( \Rightarrow \widehat {ACB} = {180^o} - (\widehat A + \widehat {ACB}) = {180^o} - ({45^o} + {115^o}) = {20^o}\)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)
\( \Rightarrow AC = \sin B.\frac{{AB}}{{\sin C}} = \sin {115^o}.\frac{{30}}{{\sin {{20}^o}}} \approx 79,5\)
Tam giác ACH vuông tại H nên ta có:
\(CH = \sin A.AC = \sin {45^o}.79,5 \approx 56\)
Vậy ngọn hải đăng cách bờ biển 56 m.
Để tính khoảng cách giữa hai địa điểm A và B mà ta không thể đi trực tiếp từ A đến B (hai địa điểm nằm ở hai bên bờ một hồ nước, một đầm lầy, …), người ta tiến hành như sau: Chọn một địa điểm C sao cho ta đo được các khoảng cách AC, CB và góc ACB.
Tính độ dài cạnh AB trong mỗi trường hợp sau:
Cho tam giác ABC có AB = 12,AC = 15,BC = 20. Tính: a) Số đo các góc A, B, C. b) Diện tích tam giác ABC.
Cho tam giác ABC có AB = 100, B = 100, C = 45 Tính: a) Độ dài các cạnh AC, BC b) Diện tích tam giác ABC.
Cho tam giác ABC có AB = 5,BC = 7, A = 120 Tính độ dài cạnh AC.
Cho tam giác ABC có BC = 12,CA = 15,C = 120 Tính: a) Độ dài cạnh AB. b) Số đo các góc A, B. c) Diện tích tam giác ABC.
Từ trên nóc của một tòa nhà cao 18,5 m, bạn Nam quan sát một cái cây cách tòa nhà 30 m và dùng giác kế đo được góc lệch giữa phương quan sát gốc cây và phương nằm ngang là
Cho tam giác ABC có AB = 12; B = 60; C = 45. Tính diện tích của tam giác ABC. Cho tam giác ABC có BC = a, AC = b, AB =c và diện tích là S. (Hình 24).
Cho tam giác ABC có AB = c, Ac = b, BC = a. Viết công thức tính cos A. Viết công thức định lí sin cho tam giác ABC.
Từ xa xưa, con người đã cần đo đạc các khoảng cách mà không thể trực tiếp đo được. Chẳng hạn, để đo khoảng cách từ vị trí A trên bờ biển tới một hòn đảo (hay con tàu,...) trên biển, người xưa đã tìm ra một cách đo khoảng cách đó như sau:
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: