Giải bài 7 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo


Chứng minh rằng với mọi số thực m ta luôn có

Đề bài

Chứng minh rằng với mọi số thực m ta luôn có \(9{m^2} + 2m >  - 3\)

Phương pháp giải - Xem chi tiết

Bước 1: Chuyển bất phương trình tương đương với \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\)

Bước 2: Tính \(\Delta \) và chỉ ra dấu của \(\Delta \)âm

Bước 3: Áp dụng tính chất của tam thức bậc hai

Lời giải chi tiết

Yêu cầu bài toán tương đương chứng minh \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m

Tam thức có \(\Delta  = {2^2} - 4.9.3 =  - 104 < 0\)

Áp dụng định lí về dấu của tam thức bậc hai ta có

\(\Delta  < 0\) và \(a = 9 > 0\) nên \(f\left( x \right)\) cùng dấu với a với mọi m

Vậy \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m \( \Leftrightarrow 9{m^2} + 2m >  - 3\)với mọi m.


Bình chọn:
4.4 trên 8 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí