Giải bài 3 trang 10 SGK Toán 10 tập 2 – Chân trời sáng tạo


Tổng hợp đề thi giữa kì 2 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng

Phương pháp giải - Xem chi tiết

Bước 1: Xác định nghiệm của tam thức (là giao điểm của đồ thị với trục hoành)

Bước 2: Xác định khoảng mà \(f\left( x \right) > 0\) (khoảng đồ thị nằm trên trục hoành)

Bước 3: Xác định khoảng mà \(f\left( x \right) < 0\) (khoảng đồ thị nằm dưới trục hoành)

Bước 4: Lập bảng xét dấu

Quảng cáo
decumar

Lời giải chi tiết

a) Tam thức \(f\left( x \right) = {x^2} + 1,5x - 1\) có hai nghiệm phân biệt \({x_1} =  - 2;{x_2} = \frac{1}{2}\)

\(\)\(f\left( x \right) > 0\) khi \(x \in \left( { - \infty , - 2} \right) \cup \left( {\frac{1}{2}, + \infty } \right)\) và \(f\left( x \right) < 0\) khi \(x \in \left( { - 2,\frac{1}{2}} \right)\)

Ta có bảng xét dấu như sau

 

b) Tam thức \(g\left( x \right) = {x^2} + x + 1\) vô nghiệm, \(g\left( x \right) > 0\forall x \in \mathbb{R}\)

Ta có bảng xét dấu như sau

 

c) Tam thức \(h\left( x \right) =  - 9{x^2} - 12x - 4\) có nghiệm kép \({x_1} = {x_2} =  - \frac{2}{3}\) và \(h\left( x \right) < 0\forall x \ne  - \frac{2}{3}\)

Ta có bảng xét dấu như sau

 

d) Tam thức \(f\left( x \right) =  - 0,5{x^2} + 3x - 6\) vô nghiệm và \(f\left( x \right) < 0\forall x \in \mathbb{R}\)

Ta có bảng xét dấu như sau:

 

e) Tam thức \(g\left( x \right) =  - {x^2} - 0,5x + 3\) có hai nghiệm \({x_1} =  - 2,{x_2} = \frac{3}{2}\)

\(g\left( x \right) > 0\) khi \(x \in \left( { - 2,\frac{3}{2}} \right)\) và \(g\left( x \right) < 0\) khi \(x \in \left( { - \infty , - 2} \right) \cup \left( {\frac{3}{2}, + \infty } \right)\)

Ta có bảng xét dấu như

 

g) Tam thức \(h\left( x \right) = {x^2} + 2\sqrt 2 x + 2\) có nghiệm kép \({x_1} = {x_2} =  - \sqrt 2 \)

\(h\left( x \right) > 0\forall x \ne  - \sqrt 2 \)

Ta có bảng xét dấu như sau

 


Bình chọn:
4.2 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.