Giải bài 4.30 trang 65 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.

Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho hình chữ nhật \(ABCD\) có \(AB = 1,\,\,BC = \sqrt 2 .\) Gọi \(M\) là trung điểm của \(AD.\)

a) Chứng minh rằng các đường thẳng \(AC\) và \(BM\) vuông góc với nhau.

b) Gọi \(H\) là giao điểm của \(AC,\,\,BM.\) Gọi \(N\) là trung điểm của \(AH\) và \(P\) là trung điểm của \(CD.\) Chứng minh rằng tam giác \(NBP\) là một tam giác vuông.

Phương pháp giải - Xem chi tiết

-  Tính các vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BM} \) xong tính tích vô hướng của hai vectơ \(\overrightarrow {AC} .\overrightarrow {BM} \)

- Tính độ dài các cạnh \(AC,\,\,AH\)

- Tính các vectơ \(\overrightarrow {NB} \) và \(\overrightarrow {NP} \) xong tính tích vô hướng của hai vectơ \(\overrightarrow {NB} .\overrightarrow {NP} \)

Lời giải chi tiết

a)      Ta có: \(\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (quy tắc hình bình hành)

Ta có: \(\overrightarrow {BM}  = \overrightarrow {AM}  - \overrightarrow {AB}  = \frac{1}{2}\overrightarrow {AD}  - \overrightarrow {AB} \)

\( \Rightarrow \) \(\overrightarrow {AC} .\overrightarrow {BM}  = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)\left( {\frac{1}{2}\overrightarrow {AD}  - \overrightarrow {AB} } \right)\)

 \(\begin{array}{l} = \frac{1}{2}\overrightarrow {AB} .\overrightarrow {AD}  - {\overrightarrow {AB} ^2} + \frac{1}{2}{\overrightarrow {AD} ^2} - \overrightarrow {AB} .\overrightarrow {AD} \\ =  - {\overrightarrow {AB} ^2} + \frac{1}{2}{\overrightarrow {AD} ^2} =  - 1 + \frac{1}{2}\left( {\sqrt 2 } \right) - 1 + 1 = 0\end{array}\)

\( \Rightarrow \) \(\overrightarrow {AC}  \bot \overrightarrow {BM} \) \( \Rightarrow \) \(AC \bot BM\)

b)     Xét \(\Delta ABC\) vuông tại \(B\) có:

\(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {1 + {{\left( {\sqrt 2 } \right)}^2}}  = \sqrt 3 \)       (1)

Xét \(\Delta ABN\) vuông tại \(A\) có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{M^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow \,\,\frac{1}{{A{H^2}}} = \frac{1}{{{1^2}}} + \frac{1}{{{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}}} = 1 + 2 = 3\)

\( \Rightarrow \,\,AH = \frac{{\sqrt 3 }}{3}\)      (2)

Từ (1) và (2) \( \Rightarrow \) \(AH = \frac{1}{3}AC\)

Ta có: \(\overrightarrow {NB}  = \overrightarrow {AB}  - \overrightarrow {AN}  = \overrightarrow {AB}  - \frac{1}{2}\overrightarrow {AH}  = \overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  = \frac{5}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AD} \)

Ta có: \(\overrightarrow {NP}  = \overrightarrow {CP}  - \overrightarrow {CN}  = \frac{1}{2}\overrightarrow {CD}  - \frac{5}{6}\overrightarrow {CA}  = \frac{5}{6}\overrightarrow {AC}  - \frac{1}{2}\overrightarrow {AB}  = \frac{5}{6}\overrightarrow {AD}  + \frac{1}{3}\overrightarrow {AB} \)

\( \Rightarrow \) \(\overrightarrow {NB} .\overrightarrow {NP}  = \left( {\frac{5}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AD} } \right)\left( {\frac{5}{6}\overrightarrow {AD}  + \frac{1}{3}\overrightarrow {AB} } \right)\)

                   \(\begin{array}{l} = \frac{{25}}{{36}}\overrightarrow {AB} .\overrightarrow {AD}  + \frac{5}{{18}}{\overrightarrow {AB} ^2} - \frac{5}{{36}}{\overrightarrow {AD} ^2} - \frac{1}{{18}}\overrightarrow {AB} .\overrightarrow {AD} \\ = \frac{5}{{18}}{\overrightarrow {AB} ^2} - \frac{5}{{36}}{\overrightarrow {AD} ^2} = \frac{5}{{18}}.1 - \frac{5}{{36}}.\left( {\sqrt 2 } \right) = \frac{5}{{18}} - \frac{5}{{18}} = 0\end{array}\)

\( \Rightarrow \) \(\overrightarrow {NB}  \bot \overrightarrow {NP} \) \( \Rightarrow \) \(NB \bot NP\)

\( \Rightarrow \) \(\Delta NBP\) vuông tại \(N\).


Bình chọn:
4.3 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.