Giải bài 2.4 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức>
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
a) \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\)
b) \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\)
c) \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\)
d) \(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định số lượng các ẩn của từng bất phương trình, nếu số ẩn vượt quá 2 ẩn thì đó không là hệ bất phương trình bậc nhất hai ẩn.
Bước 2: Nếu bất phương trình có số mũ ở một ẩn lớn hơn 1 thì hệ đó không là hệ bất phương trình bậc nhất hai ẩn.
Lời giải chi tiết
a) Hệ \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\) gồm hai bất phương trình bậc nhất hai ẩn là \(x < 0\) và \(y \ge 0\)
=> Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Hệ \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + {y^2} < 0\) không là bất phương trình bậc nhất hai ẩn (chứa \({y^2}\))
c) Hệ \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + y + z < 0\) có 3 ẩn không là bất phương trình bậc nhất hai ẩn.
d) Ta có:
\(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x + y < 9\\16x + 3y < 1\end{array} \right.\)
Đây là hệ bất phương trình bậc nhất hai ẩn và gồm hai bất phương trình bậc nhất hai ẩn là \( - 2x + y < 9\) và \(16x + 3y < 1\)
- Giải bài 2.5 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 2.6 trang 30 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải mục 3 trang 28, 29, 30 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 2 trang 28, 29 SGK Toán 10 tập 1 - Kết nối tri thức
- Giải mục 1 trang 26, 27 SGK Toán 10 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay