Giải bài 18 trang 97 SGK Toán 10 – Kết nối tri thức>
a) Cho biết đâu là số đúng, đâu là số gần đúng.
Đề bài
Các nhà toán học cổ đại Trung Quốc đã dùng phân số \(\frac{{22}}{7}\) để xấp xỉ cho \(\pi \).
a) Cho biết đâu là số đúng, đâu là số gần đúng.
b) Đánh giá sai số tuyệt đối, sai số tương đối của giá trị gần đúng này biết \(3,1415 < \pi < 3,1416\)
Lời giải chi tiết
a) Dùng phân số \(\frac{{22}}{7}\) để xấp xỉ cho \(\pi \) tức là \(\pi \)là số đúng, \(\frac{{22}}{7}\) là số gần đúng.
b) Ta có: \(3,1415 < \pi < 3,1416\)
\(\begin{array}{l} \Rightarrow \frac{{22}}{7} - 3,1415 > \frac{{22}}{7} - \pi > \frac{{22}}{7} - 3,1416\\ \Leftrightarrow 0,001357 > \frac{{22}}{7} - \pi > 0,001257\\ \Rightarrow \Delta = \left| {\frac{{22}}{7} - \pi } \right| < 0,001357\end{array}\)
Vậy sai số tuyệt đối không quá \(0,001357\)
Sai số tương đối là \(\delta = \frac{\Delta }{{\frac{{22}}{7}}} < \frac{{0,001357}}{{\frac{{22}}{7}}} \approx 0,04\% \)
- Giải bài 19 trang 97 SGK Toán 10 – Kết nối tri thức
- Giải bài 20 trang 97 SGK Toán 10 – Kết nối tri thức
- Giải bài 17 trang 97 SGK Toán 10 – Kết nối tri thức
- Giải bài 16 trang 96 SGK Toán 10 – Kết nối tri thức
- Giải bài 15 trang 96 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức