

Giải bài 1.11 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức>
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?
Tổng hợp đề thi giữa kì 2 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng?
\(A = \left\{ {x \in \mathbb{R}|\;{x^2} - 6 = 0} \right\}\);
\(B = \left\{ {x \in \mathbb{Z}|\;{x^2} - 6 = 0} \right\}\)
Lời giải chi tiết
Ta có: \({x^2} - 6 = 0 \Leftrightarrow x = \pm \sqrt 6 \in \mathbb{R}\).
Vì \(\sqrt 6 \in \mathbb{R}\) và \( -\sqrt 6 \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\).
Nhưng \( \pm \sqrt 6 \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\).
Mà điều kiện của tập hợp B là \(x \in \mathbb{Z}\).
Vậy \(B = \emptyset \).


- Giải bài 1.12 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.13 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.14 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.15 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.16 trang 19 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức