Lý thuyết Tổng và hiệu của hai vecto - SGK Toán 10 Kết nối tri thức


1. TỔNG CỦA HAI VECTƠ 2. HIỆU CỦA HAI VECTƠ

1. TỔNG CỦA HAI VECTƠ

Cho hai vecto \(\overrightarrow a ,\overrightarrow b \) bất kì (khác vecto-không). Lấy một điểm A vẽ các vecto \(\overrightarrow {AB}  = \overrightarrow a ,\;\overrightarrow {BC}  = \overrightarrow b \).

Khi đó: \(\overrightarrow a  + \overrightarrow b  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

Nếu ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

 

2. HIỆU CỦA HAI VECTƠ

+) Vecto đối của vecto \(\overrightarrow a \): là vecto có cùng độ dài nhưng ngược hướng với vecto \(\overrightarrow a \).

Kí hiệu: \( -\overrightarrow a \).

Đặc biệt: Vecto đối của vecto \(\overrightarrow 0 \) là chính nó.

Chú ý: \(\overrightarrow a  + \left( { - \overrightarrow a } \right) = \overrightarrow 0 \) và \(\overrightarrow a  + \overrightarrow b  = \overrightarrow 0  \Leftrightarrow \overrightarrow b  =  - \overrightarrow a \).

+) Phép trừ vecto: \(\overrightarrow a  - \overrightarrow b  = \overrightarrow a  + \left( { - \overrightarrow b } \right)\).

Chú ý: Nếu \(\overrightarrow b  + \overrightarrow c  = \overrightarrow a  \Rightarrow \overrightarrow a  - \overrightarrow b  = \overrightarrow c \)

Từ quy tắc ba điểm \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \), ta suy ra:

\( \Rightarrow \overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {BC} \) (quy tắc hiệu).


Bình chọn:
4.2 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!