Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 8. Tổng và hiệu của hai vectơ Toán 10 Kết nối tri t..
Giải bài 4.7 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức>
Cho hình bình hành ABCD. Hãy tìm điểm M để BM = AB + AD. Tìm mối quan hệ giữa hai vectơ CD và CM.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {BM} = \overrightarrow {AB} + \overrightarrow {AD} \). Tìm mối quan hệ giữa hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \).
Phương pháp giải - Xem chi tiết
Bước 1: Xác định vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \) dựa vào quy tắc hình bình hành, từ đó xác định điểm M.
Bước 2: Nhận xét về phương và chiều của hai vectơ \(\overrightarrow {CD} \) và \(\overrightarrow {CM} \) hoặc tìm biểu thức liên hệ giữa hai vectơ đó.
Lời giải chi tiết

Ta có: \( \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) (do ABCD là hình bình hành).
\( \Rightarrow \overrightarrow {BM} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
\( \Rightarrow \) Tứ giác ABMC là hình bình hành.
\( \Rightarrow \overrightarrow {DC} =\overrightarrow {AB} = \overrightarrow {CM} \).
\( \Rightarrow C\) là trung điểm DM.
Vậy \(\overrightarrow {CD} \) = \(2\overrightarrow {CM} \)
Chú ý khi giải
+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD} = \overrightarrow {BC} \).
+) ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
- Giải bài 4.8 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.9 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.10 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 4.6 trang 54 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải mục 2 trang 52, 53, 54 SGK Toán 10 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




