Lý thuyết Nhị thức Newton - SGK Toán 10 Cánh diều>
A. Lý thuyết 1. Một số công thức khai triển
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
A. Lý thuyết
1. Một số công thức khai triển
\({(a + b)^4} = C_4^0{a^4} + C_4^1{a^3}b + C_4^2{a^2}{b^2} + C_4^3{a^1}{b^3} + C_4^4{b^4} = {a^4} + 4{a^3}b + 6{a^2}{b^2} + 4{a^1}{b^3} + {b^4}\). |
\({(a + b)^5} = C_5^0{a^5} + C_5^1{a^4}b + C_5^2{a^3}{b^2} + C_5^3{a^2}{b^3} + C_5^4a{b^4} + C_5^5{b^5}\) \( = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\). |
Những công thức khai triển nói trên là công thức nhị thức Newton \({(a + b)^n}\) ứng với n = 4 và n = 5.
2. Công thức khai triển tổng quát
\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^k{a^{n - k}}{b^k} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\). |
Nhận xét:
- Số hạng tổng quát trong khai triển của \({(a + b)^n}\) đều có dạng \(C_n^k{a^{n - k}}{b^k}\) \((0 \le k \le n)\).
- Từ công thức nhị thức Newton nói trên, ta có khai triển của \({(a - b)^n}\) như sau:
\({(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\), ở đó các dấu “+”, “-“ xen kẽ nhau.
Ví dụ: \({(a - b)^3} = C_3^0{a^3} - C_3^1{a^{3 - 1}}b + C_3^2{a^{3 - 2}}{b^2} - C_3^3{a^{3 - 3}}{b^3} = C_3^0{a^3} - C_3^1{a^2}b + C_3^2a{b^2} - C_3^3{b^3}\).
Có thể xem thêm trong chuyên đề học tập Toán 10.
B. Bài tập
Bài 1: Khai triển biểu thức \({(x + 1)^4}\).
Giải:
Xác định số hạng: a = x, b = 1.
\({(x + 1)^4} = C_4^0{x^4} + C_4^1{x^3}.1 + C_4^2{x^2}{.1^2} + C_4^3{x^1}{.1^3} + C_4^4{.1^4} = {a^4} + 4{x^3} + 6{x^2} + 4x + 1\).
Bài 2: Khai triển biểu thức \({(x - 1)^4}\).
Giải:
Có hai cách khai triển, tùy thuộc vào việc đặt b = -1 hay b = 1.
Nếu coi a = x, b = -1:
\({(x - 1)^4} = C_4^0{x^4} + C_4^1{x^3}.( - 1) + C_4^2{x^2}.{( - 1)^2} + C_4^3{x^1}.{( - 1)^3} + C_4^4.{( - 1)^4} = {a^4} - 4{x^3} + 6{x^2} - 4x + 1\).
Hoặc có thể coi a = x, b = 1 và áp dụng công thức khai triển tổng quát:
\({(a - b)^n} = C_n^0{a^n} - C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} - C_n^3{a^{n - 3}}{b^3} + ...\), khi đó sẽ nhận được kết quả như trên (xen kẽ dấu).
Bài 3:
a) Khai triển biểu thức \({(x - 2y)^4}\) và tìm hệ số của số hạng chứa \({y^4}\).
b) Khai triển biểu thức \({(3x - y)^5}\).
Giải:
a) Coi a = x, b = -2y.
\({(x - 2y)^4} = {\left[ {x + ( - 2y)} \right]^4} = {x^4} + 4{x^3}( - 2y) + 6{x^2}{( - 2y)^2} + 4x{( - 2y)^3} + {( - 2y)^4}\)
\( = {x^4} - 8{x^3}y + 24{x^2}{y^2} - 32x{y^3} + 16{y^4}\).
Số hạng chứa \({y^4}\) là \(16{y^4}\), hệ số là 16.
b) Coi a = 3x, b = -y.
\({(3x - y)^5} = {\left[ {3x + ( - y)} \right]^5}\)
\( = {\left( {3x} \right)^5} + 5.{(3x)^4}.( - y) + 10{(3x)^3}.{( - y)^2} + 10{(3x)^2}.{( - y)^3} + 5.(3x).{( - y)^4} + {( - y)^5}\)
\( = 243{x^5} - 405{x^4}y + 270{x^3}{y^2} - 90{x^2}{y^3} + 15x{y^4} - {y^5}\).
Bài 4:
a) Xác định hệ số của \({x^6}\) trong khai triển \({\left( {2x + 1} \right)^{12}}\).
b) Xác định hệ số của \({x^9}\) trong khai triển \({\left( {3x - 2} \right)^{18}}\).
Giải:
a) Số hạng chứa \({x^6}\) là \(C_{12}^6.{\left( {2x} \right)^6} = C_{12}^6{.2^6}{x^6}\). Hệ số của \({x^6}\) là \(C_{12}^6{.2^6}\).
b) Số hạng chứa \({x^9}\) là \(C_{18}^9.{\left( {3x} \right)^9}.{( - 2)^9} = C_{18}^9.{( - 2)^9}{3^9}{x^9} = - C_{18}^9{.2^9}{3^9}{x^9}\). Hệ số của \({x^9}\) là \( - C_{18}^9{.2^9}{3^9} = - C_{18}^9{.6^9}\).
- Giải mục I trang 18 SGK Toán 10 tập 2 - Cánh diều
- Giải bài 1 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 3 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục