Giải bài 3 trang 19 SGK Toán 10 tập 2 – Cánh diều>
Xác định hệ số của x^4 trong khai triển biểu thức
Đề bài
Xác định hệ số của \({x^4}\) trong khai triển biểu thức \({\left( {3x + 2} \right)^5}\)
Phương pháp giải - Xem chi tiết
B1: Sử dụng khai triển Nhị thức Newton với \(n = 5\):\({\left( {a + b} \right)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\)
B2: Tìm hệ số của \({x^4}\)
Lời giải chi tiết
+) Ta có: \(\begin{array}{l}{\left( {3x + 2} \right)^5} = {\left( {3x} \right)^5} + 5.{\left( {3x} \right)^4}2 + 10.{\left( {3x} \right)^3}{2^2} + 10{\left( {3x} \right)^2}{.2^3} + 5.\left( {3x} \right){.2^4} + {2^5}\\ = 243{x^5} + 810{x^4} + 1080{x^3} + 720{x^2} + 240x + 32\end{array}\)
+) Hệ số của \({x^4}\) trong khai triển trên là: \({a_4} = 810\)
- Giải bài 4 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 5 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 2 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải bài 1 trang 19 SGK Toán 10 tập 2 – Cánh diều
- Giải mục I trang 18 SGK Toán 10 tập 2 - Cánh diều
>> Xem thêm