Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Kết nối tri thức


A. Lý thuyết 1. Dấu của tam thức bậc hai a) Khái niệm tam thức bậc hai

A. Lý thuyết

1. Dấu của tam thức bậc hai

a) Khái niệm tam thức bậc hai

Tam thức bậc hai (đối với x) là biểu thức có dạng \(a{x^2} + bx + c\), trong đó a, b, c là các số thực cho trước và \(a \ne 0\), được gọi là các hệ số của tam thức bậc hai.

Chú ý: Nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\) cũng được gọi là nghiệm của tam thức bậc hai \(a{x^2} + bx + c\).

\(\Delta  = {b^2} - 4ac\) và \(\Delta ' = b{'^2} - ac\) với b = 2b’ tương ứng được gọi là biệt thức và biệt thức thu gọn của tam thức bậc hai \(a{x^2} + bx + c\).

b) Dấu của tam thức bậc hai

Mối quan hệ giữa dấu của tam thức bậc hai \(a{x^2} + bx + c\) với dấu của hệ số a trong từng trường hợp của \(\Delta \) được phát biểu trong định lí về dấu của tam thức bậc hai sau đây:

Cho tam thức bậc hai \(f(x) = a{x^2} + bx + c\) \((a \ne 0)\).

- Nếu \(\Delta  < 0\) thì f(x) cùng dấu với hệ số a \(\forall x \in \mathbb{R}\).

- Nếu \(\Delta  = 0\) thì f(x) cùng dấu với hệ số a với mọi \(x \ne  - \frac{b}{{2a}}\) và \(f\left( { - \frac{b}{{2a}}} \right) = 0\).

- Nếu \(\Delta  > 0\) thì tam thức f(x) có hai nghiệm phân biệt \({x_1}\) và \({x_2}\) \(({x_1} < {x_2})\). Khi đó:

     + f(x) cùng dấu với hệ số a \(\forall x \in ( - \infty ;{x_1}) \cup ({x_2}; + \infty )\).

     + f(x) trái dấu với hệ số a \(\forall x \in ({x_1};{x_2})\).

Chú ý: Trong định lí về dấu của tam thức bậc hai, có thể thay \(\Delta \) bởi \(\Delta '\).

2. Bất phương trình bậc hai

Bất phương trình bậc hai ẩn x là bất phương trình có dạng \(a{x^2} + bx + c > 0\) (hoặc \(a{x^2} + bx + c \ge 0\), \(a{x^2} + bx + c < 0\), \(a{x^2} + bx + c \le 0\)), trong đó a, b, c là những số thực đã cho và \(a \ne 0\).

Số thực \({x_0}\) gọi là nghiệm của bất phương trình bậc hai \(a{x^2} + bx + c > 0\), nếu \(a{x_0}^2 + b{x_0} + c > 0\). Tập hợp gồm tất cả các nghiệm của bất phương trình bậc hai \(a{x^2} + bx + c > 0\) gọi là tập nghiệm của bất phương trình này.

Giải một bất phương trình bậc hai là tìm tập nghiệm của nó.

Nhận xét: Để giải bất phương trình bậc hai \(a{x^2} + bx + c > 0\) (hoặc \(a{x^2} + bx + c \ge 0\), \(a{x^2} + bx + c < 0\), \(a{x^2} + bx + c \le 0\)) ta cần xét dấu tam thức \(a{x^2} + bx + c\), từ đó suy ra tập nghiệm.

 

B. Bài tập

Bài 1: Hãy cho biết biểu thức nào sau đây là tam thức bậc hai?

A. \(3x + 2\sqrt x  + 1\)

B. \( - 5{x^4} + 3{x^2} + 4\)

C. \( - \frac{2}{3}{x^2} + 7x - 4\)

D. \({\left( {\frac{1}{x}} \right)^2} + 2\frac{1}{x} + 3\)

Giải:

\( - \frac{2}{3}{x^2} + 7x - 4\) là tam thức bậc hai với \(a =  - \frac{2}{3},b = 7,c =  - 4\).

Bài 2: Xét dấu các tam thức bậc hai sau đây:

a) \({x^2} + x + 1\).

b) \( - \frac{3}{2}{x^2} + 9x - \frac{{27}}{2}\).

c) \(2{x^2} + 6x - 8\).

Giải:

a) \(f(x) = {x^2} + x + 1\) có \(\Delta  =  - 3 < 0\) và \(a = 1 > 0\) nên f(x) > 0 với mọi \(x \in \mathbb{R}\).

b)

\(f(x) =  - \frac{3}{2}{x^2} + 9x - \frac{{27}}{2}\) có \(\Delta  = 0\) và \(a =  - \frac{3}{2} < 0\) nên f(x) có nghiệm kép x = 3 và f(x) < 0 với mọi \(x \ne 3\).

c) Dễ thấy \(f(x) = 2{x^2} + 6x - 8\) có \(\Delta ' = 25 > 0\), a = 2 > 0 và có hai nghiệm phân biệt \({x_1} =  - 4\), \({x_2} = 1\). Do đó ta có bảng xét dấu:

 

Suy ra f(x) > 0 với mọi \(x \in ( - \infty ; - 4) \cup (1; + \infty )\) và f(x) < 0 với mọi \(x \in ( - 4;1)\).

Bài 3: Giải các bất phương trình sau:

a) \(3{x^2} + x + 5 \le 0\).

b) \( - 3{x^2} + 2\sqrt 3 x - 1 \ge 0\).

c) \( - {x^2} + 2x + 1 > 0\).

Giải:

a) Tam thức \(f(x) = 3{x^2} + x + 5\) có \(\Delta  =  - 59 < 0\), hệ số a = 3 > 0 0 nên f(x) luôn dương (cùng dấu với a) với mọi x, tức là \(3{x^2} + x + 5 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình vô nghiệm.

b) Tam thức \(f(x) =  - 3{x^2} + 2\sqrt 3 x - 1\) có \(\Delta ' = 0\), hệ số a = -3 < 0 nên f(x) có nghiệm kép \(x = \frac{{\sqrt 3 }}{3}\) và f(x) luôn âm (cùng dấu với a) với mọi \(x \ne \frac{{\sqrt 3 }}{3}\), tức là \( - 3{x^2} + 2\sqrt 3 x - 1 < 0\) với mọi \(x \ne \frac{{\sqrt 3 }}{3}\).

Suy ra bất phương trình có nghiệm duy nhất \(x = \frac{{\sqrt 3 }}{3}\).

c) Tam thức \(f(x) =  - {x^2} + 2x + 1\) có \(\Delta ' = 2 > 0\) nên f(x) có hai nghiệm \({x_1} = 1 - \sqrt 2 \) và \({x_2} = 1 + \sqrt 2 \).

Mặt khác, a = -1 < 0, do đó ta có bảng xét dấu sau:

Tập nghiệm của bất phương trình là \(S = \left( {1 - \sqrt 2 ;1 + \sqrt 2 } \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí