Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài 17. Dấu của tam thức bậc hai Toán 10 Kết nối tri thức
Giải bài 6.17 trang 24 SGK Toán 10 – Kết nối tri thức>
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi
Đề bài
Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):
\({x^2} + (m + 1)x + 2m + 3\)
Phương pháp giải - Xem chi tiết
Để tam thức bậc hai \(a{x^2} + bx + c > 0\)với mọi \(x \in \mathbb{R}\) thì:
a>0 và \(\Delta < 0\)
Lời giải chi tiết
Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)
Ta có: a = 1 >0 nên \(\Delta < 0\)
\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)
Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} = 3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)
Khi đó
\( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)
Vậy \( 3-2\sqrt{5} < m < 3+2\sqrt{5}\)
- Giải bài 6.18 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.19 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.16 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.15 trang 24 SGK Toán 10 – Kết nối tri thức
- Giải mục 2 trang 22, 23 SGK Toán 10 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




