Giải mục II trang 22, 23, 24 SGK Toán 10 tập 2 - Cánh diều


Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m. b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:

Lựa chọn câu để xem lời giải nhanh hơn

Hoạt động 2

Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. 

a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m.

b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:

3,1.(0,8)2= 1,984 (\({m^2}\)).

Giá trị |S - 1,984| biểu diễn điều gì?

Lời giải chi tiết:

a) Công thức tính diện tích S của bồn hoa là: \(S = \pi .{R^2} = \pi .0,{8^2}\left( {{m^2}} \right)\)

b) Giá trị \(\left| {S - 1,984} \right|\) biểu diễn độ lệch giữa số “1,984” và S.

Hoạt động 3

Hãy ước lượng sai số tuyệt đối \({\Delta _{{S_1}}}\) ở Ví dụ 1.

Lời giải chi tiết:

Để ước lượng sai số tuyệt đối đó, ta làm như sau:  Do 3,1 < \(\pi \) < 3,15 nên\(3,1.{\left( {0,8} \right)^2} < \pi .{\left( {0,8} \right)^2} < 3,15.{\left( {0,8} \right)^2}\). Suy ra 1,984 < S < 2,016.

Vậy \({\Delta _{{S_1}}} = \left| {S - {S_1}} \right| < {\rm{ }}2,016{\rm{ }}--{\rm{ }}1,984{\rm{ }} = {\rm{ }}0,032.\;\)

Ta nói: Kết quả của bạn Ngân có sai số tuyệt đối không vượt quá 0,032 hay có độ chính xác là 0,032.

Hoạt động 4

Các nhà thiên văn tính được thời gian để Trái Đất quay một vòng xung quanh Mặt Trời là 365 ngày \( \pm \frac{1}{4}\)  ngày. Bạn Hùng tính thời gian đi bộ một vòng xung quanh sân vận động của trường khoảng 15 phút \( \pm 1\) phút. Trong hai phép đo trên, phép đo nào chính xác hơn?

Lời giải chi tiết:

Phép đo của các nhà thiên văn có sai số tuyệt đối không vượt quá \(\frac{1}{4}\)  ngày, có nghĩa là không vượt quá 360 phút. Phép đo của Hùng có sai số tuyệt đối không vượt quá 1 phút. Nếu chỉ so sánh 360 phút và 1 phút thì có thể dẫn đến hiểu rằng phép đo của bạn Hùng chính xác hơn phép đo của các nhà thiên văn. Tuy nhiên,  \(\frac{1}{4}\) ngày hay 360 phút là độ chính xác của phép đo một chuyển động trong 365 ngày, còn 1 phút là độ chính xác của  phép đo một chuyển động trong 15 phút. So sánh hai tỉ số \(\frac{{\frac{1}{4}}}{{365}} = \frac{1}{{1460}} = 0,0006849...\) và\(\frac{1}{{15}} = 0,0666...\) , ta thấy rằng phép đo của các nhà thiên văn chính xác hơn nhiều.


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục III trang 22, 23, 24 SGK Toán 10 tập 2 - Cánh diều

    Quy tròn số 3,141 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn. Hãy viết số quy tròn của số gần đúng a = 28,4156 biết Hãy tìm hiểu khối lượng của Trái Đất, Mặt Trời và viết kết quả dưới dạng số gần đúng.

  • Giải bài 1 trang 26 SGK Toán 10 tập 2 – Cánh diều

    Quy tròn số – 3,2475 đến hàng phần trăm. Số gần đúng nhận được có độ chính xác là bao nhiêu?

  • Giải bài 2 trang 26 SGK Toán 10 tập 2 – Cánh diều

    Viết số quy tròn của mỗi số gần đúng sau với độ chính xác d a) 30,2376 với d= 0,009, b) 2,3512082 với d=0,0008,

  • Giải bài 3 trang 26 SGK Toán 10 tập 2 – Cánh diều

    Ta đã biết 1 inch (kí hiệu là in) là 2,54 cm. Màn hình của một chiếc ti vi có dạng hình chữ nhật với độ dài đường chéo là 32 in, tỉ số giữa chiều dài và chiều rộng của màn hình là 16: 9. Tìm một giá trị gần đúng (theo đơn vị inch) của chiều dài màn hình ti vi và tìm sai số tương đối, độ chính xác của số gần đúng đó.

  • Giải mục I trang 21 SGK Toán 10 tập 2 - Cánh diều

    Hoá đơn tiền điện tháng 4/2021 của gia đình bác Mai là 763 951 đồng. Trong thực tế, bác Mai đã thanh toán (hoá đơn) bằng tiền mặt cho người thu tiền điện số tiền là 764 000 đồng. Tại sao bác Mai không thể thanh toán bằng tiền mặt cho người thu tiền điện số tiền chính xác là 763 951 đồng?

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.