Giải bài 9 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo


Tính khoảng cách ngắn nhất từ điểm M(5;10) đến điểm S.

Đề bài

Trong mặt phẳng Oxy cho điểm \(S(x;y)\) di động trên đường thẳng \(d:12x - 5y + 16 = 0\). Tính khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S.

Phương pháp giải - Xem chi tiết

Khi M nằm trên đường thẳng d thì khoảng ngắn nhất là đoạn vuông góc

Lời giải chi tiết

Điểm S nằm trên đường thẳng d , nên khi S di động trên đoạn thẳng d thì SM ngắn nhất khi \(SM \bot d\)

Nên khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S  là khoảng cách từ điểm \(M(5;10)\) đến d

Khoảng cách đó là: \(d\left( {M,d} \right) = \frac{{\left| {12.5 - 5.10 + 16} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)

Vậy khi S di động trên đường thẳng d thì khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là 2.


Bình chọn:
4.6 trên 9 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.