 Toán 10, giải toán lớp 10 chân trời sáng tạo
                                                
                            Toán 10, giải toán lớp 10 chân trời sáng tạo
                         Bài 2. Đường thẳng trong mặt phẳng tọa độ Toán 10 Chân..
                                                         Bài 2. Đường thẳng trong mặt phẳng tọa độ Toán 10 Chân..
                                                    Giải bài 9 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo>
Tính khoảng cách ngắn nhất từ điểm M(5;10) đến điểm S.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Trong mặt phẳng Oxy cho điểm \(S(x;y)\) di động trên đường thẳng \(d:12x - 5y + 16 = 0\). Tính khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S.
Phương pháp giải - Xem chi tiết
Khi M nằm trên đường thẳng d thì khoảng ngắn nhất là đoạn vuông góc
Lời giải chi tiết
Điểm S nằm trên đường thẳng d , nên khi S di động trên đoạn thẳng d thì SM ngắn nhất khi \(SM \bot d\)
Nên khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là khoảng cách từ điểm \(M(5;10)\) đến d
Khoảng cách đó là: \(d\left( {M,d} \right) = \frac{{\left| {12.5 - 5.10 + 16} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = 2\)
Vậy khi S di động trên đường thẳng d thì khoảng cách ngắn nhất từ điểm \(M(5;10)\) đến điểm S là 2.
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 10 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 8 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 7 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 6 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 5 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            