Giải bài 2 trang 57 SGK Toán 10 tập 2 – Chân trời sáng tạo


Đề bài

Cho tam giác ABC biết \(A(2;5),B(1;2)\) và \(C(5;4)\)

a) Lập phương trình tổng quát của đường thẳng BC

b) Lập phương trình tham số của đường trung tuyến AM

c) Lập phương trình của đường cao AH

Lời giải chi tiết

a) Ta có: \(\overrightarrow {BC}  = \left( {4;2} \right)\)  \(\Rightarrow VTPT: \overrightarrow {n_{BC}}  = \left( {2; - 4} \right)\)

Phương trình tổng quát của đường thẳng BC đi qua điểm \(B(1;2)\) và nhận vectơ \(\overrightarrow n  = \left( {2; - 4} \right)\) làm VTPT là:

\(2\left( {x - 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 4y + 6 = 0\)

b) M là trung điểm của BC nên ta có tọa độ điểm M là \(M\left( {3;3} \right)\)

Đường thẳng AM đi qua điểm \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {AM}  = \left( {1; - 2} \right)\) làm vectơ chỉ phương nên ta có phương trình tham số của trung tuyến AM là:

                   \(\left\{ \begin{array}{l}x = 2 + t\\y = 5 - 2t\end{array} \right.\)

c) Ta có: \(AH \bot BC\) nên đường cao AH nhận vectơ \(\overrightarrow {BC}  = \left( {4;2} \right)\) làm vectơ pháp tuyến

Đường thẳng AH đi qua \(A\left( {2;5} \right)\) và nhận vectơ \(\overrightarrow {BC}  = \left( {4;2} \right)\) làm vectơ pháp tuyến, suy ta phương trình tổng quát của đường cao AH là:

          \(4\left( {x - 2} \right) + 2\left( {y - 5} \right) = 0 \Leftrightarrow 4x + 2y - 18 = 0\)


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.