Giải bài 8 trang 98 SGK Toán 10 tập 1 – Cánh diều>
Cho tam giác ABC có AB = 2,AC = 3,BAC = 60 Gọi M là trung điểm của đoạn thẳng BC.
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho tam giác ABC có \(AB = 2,AC = 3,\widehat {BAC} = {60^o}.\) Gọi M là trung điểm của đoạn thẳng BC. Điểm D thỏa mãn \(\overrightarrow {AD} = \frac{7}{{12}}\overrightarrow {AC} .\)
a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \)
b) Biểu diễn \(\overrightarrow {AM} ,\overrightarrow {BD} \) theo \(\overrightarrow {AB} ,\overrightarrow {AC} \)
c) Chứng minh \(AM \bot BD\).
Phương pháp giải - Xem chi tiết
+) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng công thức \(\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos (\overrightarrow {AB} ,\overrightarrow {AC} ) = AB.AC.\cos \widehat {BAC}\)
+) M là trung điểm BC \( \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \) với điểm A bất kì.
+) \(AM \bot BD \Leftrightarrow \overrightarrow {AM} .\overrightarrow {BD} = 0\)
Lời giải chi tiết
a) \(\overrightarrow {AB} .\overrightarrow {AC} = 2.3.\cos \widehat {BAC} = 6.\cos {60^o} = 3\)
b)
Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)(do M là trung điểm của BC)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
+) \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} = \frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} \)
c) Ta có:
\(\begin{array}{l}\overrightarrow {AM} .\overrightarrow {BD} = \left( {\frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} } \right)\left( {\frac{7}{{12}}\overrightarrow {AC} - \overrightarrow {AB} } \right)\\ = \frac{7}{{24}}\overrightarrow {AB} .\overrightarrow {AC} - \frac{1}{2}{\overrightarrow {AB} ^2} + \frac{7}{{24}}{\overrightarrow {AC} ^2} - \frac{1}{2}\overrightarrow {AC} .\overrightarrow {AB} \\ = - \frac{1}{2}A{B^2} + \frac{7}{{24}}A{C^2} - \frac{5}{{24}}\overrightarrow {AB} .\overrightarrow {AC} \\ = - \frac{1}{2}{.2^2} + \frac{7}{{24}}{.3^2} - \frac{5}{{24}}.3\\ = 0\end{array}\)
\( \Rightarrow AM \bot BD\)
- Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều
- Giải bài 7 trang 98 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 6 trang 98 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 5 trang 98 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 4 trang 98 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm