Giải bài 5 trang 98 SGK Toán 10 tập 1 – Cánh diều


Cho tam giác ABC. Chứng minh:

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho tam giác ABC. Chứng minh: \(A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = 0\)

Phương pháp giải - Xem chi tiết

+) Vecto \(\overrightarrow {AB} \) bất kì, ta có: \(A{B^2} = {\overrightarrow {AB} ^2}\).

+) Tính chất phân phối:  \({\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} )\)

Lời giải chi tiết

\(\begin{array}{l}A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA} \\ = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} ) = \overrightarrow {AB} (\overrightarrow {AC}  + \overrightarrow {CA} ) = \overrightarrow {AB} .\overrightarrow 0  = 0.\end{array}\)


Bình chọn:
4.4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí