Giải bài 6.6 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống>
Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng
a) \(y = - \frac{1}{2}x + 5\)
b) \(y = 3{x^2}\)
c) \(y = \left\{ \begin{array}{l}{x^2},x \ge 0\\ - x - 1,x < 0\end{array} \right.\)
Lời giải chi tiết
a) \(y = - \frac{1}{2}x + 5\)
Đồ thị hàm số \(y = - \frac{1}{2}x + 5\) là đường thẳng đi qua 2 điểm A(0; 5) và B\(\left( {10;0} \right)\)
Từ đồ thị ta có:
+) Tập giá trị: \(\mathbb{R}\)
+) Hàm số nghịch biến trên \(\mathbb{R}\)
b) \(y = 3{x^2}\)
Đồ thị hàm số \(y = 3{x^2}\) là đường parabol có bề lõm quay lên trên và đỉnh là gốc tọa độ O
Từ đồ thị ta có:
+) Tập giá trị: \({\rm{[}}0; + \infty )\)
+) Hàm số nghịch biến trên \(( - \infty ;0)\) và đồng biến trên \((0; + \infty )\)
c) \(y = \left\{ \begin{array}{l}{x^2},x \ge 0\\ - x - 1,x < 0\end{array} \right.\)
Ta có đồ thị sau:
Từ đồ thị ta có:
+) Tập giá trị: \(( - 1; + \infty )\)
+) Hàm số nghịch biến trên \(( - \infty ;0)\) và đồng biến trên \((0; + \infty )\)
- Giải bài 6.7 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 6.8 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 6.9 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 6.10 trang 9 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
- Giải bài 6.5 trang 8 sách bài tập toán 10 - Kết nối tri thức với cuộc sống
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay