Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương VI Toán 10 Kết nối tri thức
Giải bài 6.33 trang 29 SGK Toán 10 – Kết nối tri thức>
Giải các phương trình sau:
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Giải các phương trình sau:
a) \(\sqrt {2{x^2} - 14} = x - 1\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} .\)
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của phương trình
- Bình phương hai vế của phương trình để mất dấu căn
- Đưa về dạng phương trình \(a{x^2} + bx + c = 0\)
Lời giải chi tiết
a) \(\sqrt {2{x^2} - 14} = x - 1\quad \left( 1 \right)\)
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {1; + \infty } \right)\)
\(\begin{array}{l}\left( 1 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 14} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 14 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 15 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = - 5}\end{array}} \right.\end{array}\)
Nhận thấy \(x = 3\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 1 \right)\) là: \(x = 3\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} \quad \left( 2 \right)\)
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} - 5x + 2 \ge 0}\\{{x^2} - 2x - 3 \ge 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\frac{{ - 5 - \sqrt {33} }}{2} \le x \le - 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {\frac{{ - 5 - \sqrt {33} }}{2}; - 1} \right].\)
\(\begin{array}{l}\left( 2 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt { - {x^2} - 5x + 2} } \right)^2} = {\left( {\sqrt {{x^2} - 2x - 3} } \right)^2}\\ \Leftrightarrow \,\, - {x^2} - 5x + 2 = {x^2} - 2x - 3\\ \Leftrightarrow \,\,2{x^2} + 3x - 5 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{5}{2}}\end{array}} \right.\end{array}\)
Nhận thấy \(x = - \frac{5}{2}\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 2 \right)\) là: \(x = - \frac{5}{2}\)
- Giải bài 6.34 trang 29 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.32 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.31 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.29 trang 28 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




