Giải bài 6.31 trang 28 SGK Toán 10 – Kết nối tri thức>
Xác định parabol trong mỗi trường hợp sau
Đề bài
Xác định parabol \(\left( P \right):y = a{x^2} + bx + 3\) trong mỗi trường hợp sau:
a) \(\left( P \right)\) đi qua hai điểm \(A(1;1)\) và \(B( - 1;0)\).
b) \(\left( P \right)\) đi qua điểm \(M(1;2)\) và nhận đường thẳng \(x = 1\) làm trục đối xứng.
c) \(\left( P \right)\) có đỉnh là \(I(1;4).\)
Phương pháp giải - Xem chi tiết
a) thay các điểm \(A(1;1)\) và \(B( - 1;0)\) vào parabol \(\left( P \right)\) để giải hệ phương trình tìm \(a,\,\,b\).
b) thay điểm \(M(1;2)\) vào parabol \(\left( P \right)\) và trục đối xứng \(x = - \frac{b}{{2a}} = 1\) để giải hệ phương trình tìm \(a,\,\,b\).
c) thay đỉnh \(I(1;4)\) vào parabol \(\left( P \right)\) và trục đối xứng \(x = - \frac{b}{{2a}} = 1\) để giải hệ phương trình tìm \(a,\,\,b\).
Lời giải chi tiết
a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)
b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b = - 2a.\)
Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b = - 1.\)
Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 2}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)
c) Parabol có đỉnh \(I(1;4)\) nên ta có:
\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 2}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^2} + 2x + 3.\)
- Giải bài 6.32 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.33 trang 29 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.34 trang 29 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.29 trang 28 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức