Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương VI Toán 10 Kết nối tri thức
Giải bài 6.31 trang 28 SGK Toán 10 – Kết nối tri thức>
Xác định parabol trong mỗi trường hợp sau
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Xác định parabol \(\left( P \right):y = a{x^2} + bx + 3\) trong mỗi trường hợp sau:
a) \(\left( P \right)\) đi qua hai điểm \(A(1;1)\) và \(B( - 1;0)\).
b) \(\left( P \right)\) đi qua điểm \(M(1;2)\) và nhận đường thẳng \(x = 1\) làm trục đối xứng.
c) \(\left( P \right)\) có đỉnh là \(I(1;4).\)
Phương pháp giải - Xem chi tiết
a) thay các điểm \(A(1;1)\) và \(B( - 1;0)\) vào parabol \(\left( P \right)\) để giải hệ phương trình tìm \(a,\,\,b\).
b) thay điểm \(M(1;2)\) vào parabol \(\left( P \right)\) và trục đối xứng \(x = - \frac{b}{{2a}} = 1\) để giải hệ phương trình tìm \(a,\,\,b\).
c) thay đỉnh \(I(1;4)\) vào parabol \(\left( P \right)\) và trục đối xứng \(x = - \frac{b}{{2a}} = 1\) để giải hệ phương trình tìm \(a,\,\,b\).
Lời giải chi tiết
a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)
b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b = - 2a.\)
Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b = - 1.\)
Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 2}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)
c) Parabol có đỉnh \(I(1;4)\) nên ta có:
\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 2}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^2} + 2x + 3.\)
- Giải bài 6.32 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.33 trang 29 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.34 trang 29 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.29 trang 28 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




