Giải bài 6.26 trang 28 SGK Toán 10 – Kết nối tri thức>
Hàm số
Đề bài
Hàm số \(y = {x^2} - 5x + 4\)
A. Đồng biến trên khoảng \((1; + \infty ).\)
B. Đồng biến trên khoảng \(( - \infty ;4).\)
C. Nghịch biến trên khoảng \(( - \infty ;1).\)
D. Nghịch biến trên khoảng \((1;4).\)
Phương pháp giải - Xem chi tiết
- Xác định trục đối xứng \(x = - \frac{b}{{2a}}\) của hàm số
- Xác định khoảng đồng biến, nghịch biến của hàm số
Lời giải chi tiết
Trục đối xứng của hàm số là: \(x = \frac{5}{2}.\)
Vì \(a = 1 > 0\) nân hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)
Chọn C.
- Giải bài 6.27 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.28 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.29 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.30 trang 28 SGK Toán 10 – Kết nối tri thức
- Giải bài 6.31 trang 28 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức