
Đề bài
Khi du lịch đến thành phố St. Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ toạ độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng ở vị trí có toạ độ (162;0). Biết một điểm M trên cổng có toạ độ là (10;43). Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.
Phương pháp giải - Xem chi tiết
- Xác định các điểm thuộc đồ thị.
- Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
- Thay tọa độ các điểm vào và tìm a, b, c.
- Tìm đỉnh của parabol, từ đó suy ra chiều cao của cổng.
Lời giải chi tiết
Từ đồ thị ta thấy các điểm thuộc đồ thị là: \(A\left( {0;0} \right),B\left( {10;43} \right),B\left( {162;0} \right)\).
Gọi hàm số là \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\)
Thay tọa độ các điểm A, B, C vào ta được hệ:
\(\left\{ \begin{array}{l}a{.0^2} + b.0 + c = 0\\a{.10^2} + b.10 + c = 43\\a{.162^2} + b.162 + c = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 0\\100a + 10b = 43\\{162^2}a + 162b = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}c = 0\\a = - \frac{{43}}{{1520}}\\b = \frac{{3483}}{{760}}\end{array} \right.\)
Từ đố ta có \(y = - \frac{{43}}{{1520}}{x^2} + \frac{{3483}}{{760}}x\)
Hoành độ đỉnh của đồ thị là: \(x = - \frac{b}{{2a}} = 81\)
Khi đó: \(y = - \frac{{43}}{{1520}}{.81^2} + \frac{{3483}}{{760}}.81 \approx 186\)(m)
Vậy chiều cao của cổng là 186m.
Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau
Cho đồ thị hàm số bậc hai ở Hình 15.
Xác định parabol y = ax^2 + bx + 4 trong mỗi trường hợp sau:
Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a,b,c lần lượt là hệ số của x^2, hệ số của x và hệ số tự do.
Trong bài toán ở phần mở đầu, độ cao y (m) của một điểm thuộc vòng cung thành cầu cảng Sydney đạt giá trị lớn nhất là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
a) Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
a) Viết công thức xác định hàm số trên về dạng đa thức theo lũy thừa với số mũ giảm dần của x. b) Bậc của đa thức trên bằng bao nhiêu? Cho hai ví dụ về hàm số bậc hai.
Cầu cảng Sydney là một trong những hình ảnh biểu tượng của thành phố Sydney và nước Australia. Độ cao y(m) của một điểm thuộc vòng cung thành cầu cảng Sydney có thể biểu thị theo độ dài x(m) tính từ chân cầu bên trái dọc theo đường nối với chân cầu bên phải như sau (Hình 10):
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: