Giải câu hỏi khởi động trang 39 SGK Toán 10 tập 1 - Cánh diều>
Cầu cảng Sydney là một trong những hình ảnh biểu tượng của thành phố Sydney và nước Australia. Độ cao y(m) của một điểm thuộc vòng cung thành cầu cảng Sydney có thể biểu thị theo độ dài x(m) tính từ chân cầu bên trái dọc theo đường nối với chân cầu bên phải như sau (Hình 10):
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Cầu cảng Sydney là một trong những hình ảnh biểu tượng của thành phố Sydney và nước Australia. Độ cao y(m) của một điểm thuộc vòng cung thành cầu cảng Sydney có thể biểu thị theo độ dài x(m) tính từ chân cầu bên trái dọc theo đường nối với chân cầu bên phải như sau (Hình 10):
\(y = - 0,00188{\left( {x - 251,5} \right)^2} + 118\)
Hàm số \(y = - 0,00188{\left( {x - 251,5} \right)^2} + 118\) có gì đặc biệt?
Lời giải chi tiết
Hàm số có đồ thị là một hình parabol, bề lõm quay xuống dưới.
Hình ảnh hình học có tính đối xứng.
- Giải mục I trang 39 SGK Toán 10 tập 1 - Cánh diều
- Giải mục II trang 39, 40, 41, 42 SGK Toán 10 tập 1 - Cánh diều
- Giải mục III trang 43, 44 SGK Toán 10 tập 1 - Cánh diều
- Giải bài 1 trang 43 SGK Toán 10 tập 1 – Cánh diều
- Giải bài 2 trang 43 SGK Toán 10 tập 1 – Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều