Giải bài 6 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Xác định các tập hợp sau đây:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Xác định các tập hợp sau đây:
a) \(( - \infty ;0] \cup [ - \pi ;\pi ]\)
b) \([ - 3,5;2] \cap ( - 2;3,5)\)
c) \(( - \infty ;\sqrt 2 ] \cap [1; + \infty )\)
d) \(( - \infty ;\sqrt 2 ]{\rm{\backslash }}[1; + \infty )\)
Phương pháp giải - Xem chi tiết
Biểu diễn các tập hợp trên trục số
Lời giải chi tiết
a) Để xác định tập hợp \(A = ( - \infty ;0] \cup [ - \pi ;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = ( - \infty ;\pi ]\)
b) Để xác định tập hợp \(B = [ - 3,5;2] \cap ( - 2;3,5)\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = ( - 2;2]\)
c) Để xác định tập hợp \(C = ( - \infty ;\sqrt 2 ] \cap [1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [1;\sqrt 2 ]\)
d) Để xác định tập hợp \(D = ( - \infty ;\sqrt 2 ]{\rm{\backslash }}[1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ;1)\)
- Giải bài 5 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 2 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 1 trang 25 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường thẳng trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo