
Đề bài
Trên sông, một cano chuyển động thẳng đều theo hướng \(S{15^o}E\) với vận tốc có độ lớn bằng 20 km/h. Tính vận tốc riêng của cano, biết rằng, nước trên sông chảy về hướng đông với vận tốc có độ lớn bằng 3 km/h.
Phương pháp giải - Xem chi tiết
Định lí cosin trong tam giác OAC: \(A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos \widehat {AOC}\)
Lời giải chi tiết
Lấy các điểm: A, C sao cho:
Vectơ vận tốc dòng nước\(\overrightarrow {{v_n}} = \overrightarrow {OA} \)
Vectơ vận tốc chuyển động \(\overrightarrow {{v_{cano}}} = \overrightarrow {OC} \)
Ta có: \(\overrightarrow {{v_{cano}}} = \overrightarrow {{v_n}} + \overrightarrow v \), với \(\overrightarrow v \) là vectơ vận tốc riêng của cano.
Gọi B là điểm sao cho \(\overrightarrow v = \overrightarrow {OB} \) thì OACB là hình bình hành.
Vì tàu chuyển động theo hướng \(S{15^o}E\) nên vectơ \(\overrightarrow {OC} \) tạo với hướng Nam (tia OS) góc \({15^o}\) và tạo với hướng Đông (tia OE) góc \({90^o} - {15^o} = {75^o}\).
Mà nước trên sông chảy về hướng đông nên vectơ \(\overrightarrow {OA} \) cùng hướng với vectơ \(\overrightarrow {OE} \)
Do đó góc tạo bởi vectơ \(\overrightarrow {OC} \) và vectơ \(\overrightarrow {OA} \) là \({75^o}\)
Xét tam giác OAC ta có:
\(OA = \;|\overrightarrow {{v_n}} |\; = 3\); \(OC = \;|\overrightarrow {{v_{cano}}} |\; = 20\) và \(\widehat {AOC} = {75^o}\)
Áp dụng định lí cosin tại đỉnh O ta được:
\(\begin{array}{l}A{C^2} = O{A^2} + O{C^2} - 2.OA.OC.\cos \widehat {AOC}\\ \Leftrightarrow A{C^2} = {3^2} + {20^2} - 2.3.20.\cos {75^o} \approx 378\\ \Leftrightarrow OB = AC \approx 19,44\end{array}\)
Vậy vận tốc riêng của cano là 19,44 km/h
Cho ba vectơ a, b, u với |a|=1, |b|=1 và a vuông góc với b. Xét một hệ trục Oxy với các vectơ đơn vị i=a,j=b. Chứng minh rằng: a) Vectơ u có tọa độ là (u.a; u.b) b) u= (u.a).a +(u.b).b
Cho vectơ a khác 0. Chứng minh rằng 1/|a|. a (hay còn được viết là a/|a| là một vectơ đơn vị, cùng hướng với vectơ a.
Trong mặt phẳng tọa độ Oxy, cho A (1; 2), B (3; 4), C (-2; -2) và D (6;5). a) Hãy tìm tọa độ của các vectơ AB và CD b) Hãy giải thích tại sao các vectơ AB và CD cùng phương. c) Giả sử E là điểm có tọa độ (a; 1). Tìm a để các vectơ AC và BE cùng phương. d) Với a tìm được, hãy biểu thị vectơ AE theo các vectơ AB và AC.
Trong mặt phẳng tọa độ Oxy, cho A (2; 1), B (-2; 5) và C (-5; 2). a) Tìm tọa độ của các vectơ BA và BC b) Chứng minh rằng A, B, C là ba đỉnh của một tam giác vuông. Tính diện tích và chu vi của tam giác đó. c) Tìm tọa độ trọng tâm G của tam giác ABC. d) Tìm tọa độ của điểm D sao cho tứ giác BCAD là một hình bình hành.
Cho hình bình hành ABCD. Chứng minh rằng với mọi điểm M, ta có MA + MC = MB + MD
Trên cạnh BC của tam giác ABC lấy điểm M sao cho MB = 3 MC.
Cho hình vuông ABCD có cạnh a. Khẳng định nào sau đây là đúng? A. AB.BD=45 B. AC.BC=45 và AC.BC=a^2 C. AC.BD= D. BA.BD=- a^2
Khẳng định nào sau đây là đúng?
Góc giữa vectơ a =(1; -1) và vectơ b = (- 2;0) có số đo bằng
Trong mặt phẳng tọa độ, vectơ nào sau đây có độ dài bằng 1?
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau? A. u = (2;3) và v =(4;6) B. a = (1; - 1) và b = ( - 1;1) C. z = (a;b) và t = ( - b;a) D. n = (1;1) và k = (2;0)
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây có cùng phương?
>> Xem thêm
Các bài khác cùng chuyên mục
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: