Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
Bài tập cuối chương IV Toán 10 Kết nối tri thức
Giải bài 4.28 trang 71 SGK Toán 10 – Kết nối tri thức>
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau? A. u = (2;3) và v =(4;6) B. a = (1; - 1) và b = ( - 1;1) C. z = (a;b) và t = ( - b;a) D. n = (1;1) và k = (2;0)
Đề bài
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?
A. \(\overrightarrow u = (2;3)\) và \(\overrightarrow v = \left( {4;6} \right)\)
B. \(\overrightarrow a = (1; - 1)\) và \(\overrightarrow b = ( - 1;1)\)
C. \(\overrightarrow z = (a;b)\) và \(\overrightarrow t = ( - b;a)\)
D. \(\overrightarrow n = (1;1)\) và \(\overrightarrow k = (2;0)\)
Phương pháp giải - Xem chi tiết
+) Cho \(\overrightarrow u \;(x;y),\;\overrightarrow v \;(z;t)\) thì \(\overrightarrow u .\overrightarrow v = x.z + y.t\)
+) \(\overrightarrow u\; \bot\overrightarrow v\Leftrightarrow \overrightarrow u .\;\overrightarrow v = 0\)
Lời giải chi tiết
A. Ta có: \(\overrightarrow u .\overrightarrow v = 2.4 + 3.6 = 26 \ne 0\) nên \(\overrightarrow u \) và \(\overrightarrow v \) không vuông góc với nhau.
B. Ta có: \(\overrightarrow a .\overrightarrow b = 1.( - 1) + ( - 1).1 = - 2 \ne 0\) nên \(\overrightarrow a \) và \(\overrightarrow b \) không vuông góc với nhau.
C. Ta có: \(\overrightarrow z .\overrightarrow t = a.( - b) + b.a = 0\) nên \(\overrightarrow z \) và \(\overrightarrow t \) vuông góc với nhau.
Chọn đáp án C
D. Ta có: \(\overrightarrow n .\overrightarrow k = 1.2 + 1.0 = 2 \ne 0\) nên \(\overrightarrow n \) và \(\overrightarrow k \) không vuông góc với nhau.
- Giải bài 4.29 trang 71 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.30 trang 71 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.31 trang 71 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.32 trang 71 SGK Toán 10 – Kết nối tri thức
- Giải bài 4.33 trang 71 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức




